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; PREFACE

For many Air Force flight dynamic vehicle probleas it is absolutely
essential to utilize effective filtering techniques. This includes such

issues as ride control, most effective flight vehicle systems instrumentation

utilization, etc. One of the most important areas for such techniques is
that of observers, and this report presents ohe of the most densely rich

collection of results to be published to date on the national scene.
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SECTION I ¢
INTRODUCTION AND OUTLINE OF RESEARCH

1.1  INTRODUCTION AND PROBLEM STATEMENT
The general state estimation problem to be considered in this
dissertation is described simply as follows. Given the linear stochastic

discrete-time dynamical system characterized by the equations
at Aty a.n
Y= Hx +y, (1.2)
wherc

X; is the n-dimensional state vector

Y; is the m-dimensional measurement vector

w and Yy, are, respectively, n-dimensional and m-dimensional
indcpendent Gaussian white noise sequences having zero means and

covariances Q; and R,

and x , the initial state, is an independent Gaussian vector with meanzo
and covariance Mo' It is desired to find an estimate of the state vector X at

nin

time along with its associated error cevariance Pl /i The notation

-il /i implies the estimate is to be based on all the measurements obtained
up to and including y, obtained at time "i." Itis, of course, also desired
that this estimate ii 0 be optimal in some sense,-i.e., with respect to some
given periormance criterion, There are many performance criteria which

have been presented in the literature pertaining to estimation theory,

however, from the standpoint of mathematical tractability the quadratic
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performance criterion is most appealing and it was this performance
criterion which was used quite successfully by Kalman [(14]. If it is
desired that the estimate il /i be optimal in the mean-square sense, which
implics that the estimate X, /i minimizes the quantity B (lix, /1'51”2 }

then the solution to the estimation problem is the well-known Kalman filter

and the defining equations for the optimal Kalman estimator are

Xigr/ibr = Bpagt K@~ B ) (1.3)
Kigr = Pipayi B BipPig /ity *R )" (1.9
P/t = AP A+ Q (1.5)
Pivrzier = (o - KigHig) Py (1.6)

where Xi +1/i = Aigl /i To initialize the Kalman filter at time "i=0" we take
20/0 3 3o A Po/o < Mo'

Although in theory the Kalman filter completely solves the problem
of state estimation in the mean-square sense for linear systems with
Gaussian statistics, its inherent complexity and implementation have
discouraged widespread application. Building the Kalman filter essentially
requires the simulatian of the entire n-dimensional system being observed. ]'
Equally important, the Ricatti equations (1.5) and (1.6) which must be

"l"

solved at cach time instant to obtain the optimal Kalman gain matrix, Ki»
have been the source of much trouble in the real-time mechanization of
Kalman filters, especially in the case of large dimensional systems. These
numerical and computational problems associated with the real-time

implementation of Kalman filters have led many researchers to seek out
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simpler, less optimal solutions to the minimum mean-square state
e¢stimation problem.

Early work in this a:#a was done by Luenberger [20-22] who showed
that when the system (1.1) and (1.2) is time-invariant and no noise distur-
bances are present, the state vector X, may be reconstructed exactly with a
stable linear system of order "n-m" which he called a minimal-order
ubscrver. Luenberger's basic idea in the development of his minimal-order
observer is the notion that since there are "m" independent measurements
alrcady available it should be possible to reconstruct the entire n-dimensional
state vectlor of the system by generating only "n-m" additional quantities and
combining them appropriately with the “m" already existing outputs, Of
course, Luenberger's basic assumption that the system inputs are free of
noise is not always satisfied in practice and this comprises a fundamental
limitation to his original work.

Next, Aoki and Huddle (3] extended Luenberger's work to include the
cffects of noise disturbances w; and y;. However, their work was restricted
to time-invariant systems and as a result their technique is not directly
applicable to the more general time-varying system modelec in (1.1) and
(1.2). The technique presented in Aoki and Huddle [3] was essentially to
construct a minimal-order observer which minimized the steady-state mean-
square estimation error. However, their optimization technique is compu-
tativnally formidable, even for the simplest of systems, and as a result does
not appear to have been used to any large degree in the design of minimal-
order observers for practical engineering systems.

Attempts to construct optimal observer designs based on a purely

deterministic point of view also appear to have been fruitless. Newmann (23]

e
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has investigated the standard optimal control problem with a quadratic cost

function for the case of linear timce-invariant systems using an vbserver in
the fecedback path when sume of the state variables are not measurable., By
countcrexample, he clearly demonstrat -1 that if nothing is known about the
initial conditions of the state vector then there is no way of designing the
ubscerver so that the cost of control will be minimized. In fact, if nothing

is known about the initial conditions then high cost may result from the use of
an ohscrver in the feedback path,

Dcllon [10] also studied the deterministic feedback optimal control
problem with the standard quadratic cost function from the standpoint of using
a minimai-order observer in the feedback to reconstruct the state vector X
Dellon considered the more general time-varying discrete system in the
absence of noise disturbances and has indicated similar findings. Restricting
his observer design to that class of observers having constant and equal
cigenvalues he concluded that the relative degradation in cost from the
optimal (i.e., when all the states are available for feedback) cannot be made
arbitrarily small by proper choice of observer eigenvalues but the relative
dcgradation depends upon the original optimization problem.

More recently, Ash [4, 5] developed a sub-optimal minimal-order
obscrver estimator design applicable to both discrete and continuous time-
varying stochastic systems. His main goal was to develop a stable minimal-
order observer which provided "acceptable" mean-square estimation errors.
Ash himself stated that his work comprises an engineering solution rather
than a mathematical solution to the problem. The design procedure of Ash

is a "trial and error" technique which, if judiciously applied, may result in a

rclatively good sub-optimal estimator in comparison to the corresponding




optimal Kalman filter. Howevcr, in the utilization of Ash's “trial and crror”

technique it is not at all clear how to achieve acceptable performance without
trying many designs and selecting the best design out of those which were
tried out,

To review the preceeding paragraphs, we have introduced the
fundamental problem of minimum mean-square estimation for linear discrete
stochastic systems and have indicated Kalman's optimal solution under the
assumption of Gaussian noise processes. After describing Kalman's filter
and its inherent problems of computation and implementation in real-time
Systems, we next considered the idea of using Luenberger's minimal-order
obscrver as an alternate to the Kalman filter. The evolution of Luenberger's
basic ubscrver theory is then presented through a discussion of the attempts
of various researchers to design observers which are optimal in some sense,
both from a deterministic control theory point of view as well as from a more
general stochastic estimation theory point of view. Through this evolutionary
discussion we have attempted to provide the reader with a smooth transition
from Lucnberger's original concept of a minimal-order observer to the
ultimate topic of this dissertation. It should be clear from the historical
c¢volution that the solution for an optimal minimal-order observer has
importance not only from a theoretical standpoint but also from the standpoint
of designing optimal and suboptimal engineering systems. For these reasons,
we have considered, in this dissertation, the problem of constructing an
optimal minimal-order observer for discrete-time stochastic systems and, in
the spirit of Kalman, have chosen the mean-square estimation error as our

performance criterion,

wn




1.2 OUTLINE OF I DISSERTATION

Chapter 2 is a preseatation of some of the more important basic
results of observer theory as related to deterministic discrete time-varying
systems. Chapter 2 has been tncluded mainly for completeness and is
intended to introduce the reader to the basics of observer theory. Those
familiar with the material may skip Chapter 2 without loss of continuity,

New theoretical results are given in Chapter 3, in which is presented
the fundamental solution for the optimal minimal-order observer in the
case where the nolses w; and v; are Gausslan white noise sequences. Also, in
Chapter 3 the complete generality of the optimal minimal-order observer
design is discussed and the equivalence of this observer and the Kalman
filter is demonstrated for the special case in which the measurement noise,
A is identically zero, Chapter 4 treats lmportant new extensiouns of the
basic minimal-order observer design to the class of systems in which the
nuise disturbances wo Y are time-wise correlated processes of the Gauss-
Markov type.

A comprehensive and comparative study of several observer desigus,
including the Kalman filter, the optimal minimal-order observer, and
scveral equal eigeavalue observer designs, is preseanted in the examples of
Chapter 5. The computer simulations of Chapter 5 treat the practical
problem of designing a radar tracking system of reduced complexity based on
the optimal minimal-order observer solutions developed in the previous
chapters 3 and 4 of the dissertation,

The final conclusions and recommendations for further research are

presented in Chapter 6.




SECTION II
SOME FUNDAMENTAL RESULTS OF DETERMINISTIC
OBSERVER THEORY

2.1  MINIMAL-ORDER OBSERVERS FOR DETERMINISTIC SYSTEMS

The purpose of this chapter is to review some of the more important
fundamental results of deterministic observer theory which have been
obtained by various researchers to date. We begin by defining the concept of
a minimal-order observer for linear discrete-time dynamical systems.

Huddle (13] has shown that a completcly observable n-dimensional system

X1 = A By (2.1)
with m independent outputs

¥ Hy 2.2
can he "ubserved" with an (n-m)-dimensional system

Zi41 = Fi2 +O; + Dy (2.3)
such that the output of the observer is of the form

z = Tlil +& (2.9)
where

i-1
Ené(fo FJ) @, - ToXy) (2.5)




If the observer initial condition is chosen such that 2z, = To’-‘o then

from (2.4), (2.9) it is seen that z = Tl’-“ for all "I" 20 and in this case it

is possible to reconstruct x, exactly from y, and z,. The observer is chosen
T

s0 that the rows of [—HL] are linearly independent and the estimate of X is

i
taken as

»k
« | z

X, = 2,6

If z, = T oXo then (2.6) will give the true value of the state X
Huddle also proved that for the system (2.3) to be an observer of the
state x; In (2.1) it is both necessary and sufficient that the following matrix

relations be satisfied

T Ay = FiT, + DH, 2.7

Gy = Tiub @2.8)

T 71
Further, since it is necessary that the matrix inverse ['HL] exist,
¢ i
Huddle postulated the inverse to be partitioned in the form [P’ |Vi] and
obtained the solution of (2.7) to be
F, = T

1A 2.9

D, = TuAVY, (2.10)

where P‘T‘ +VH =L
By using a clever coordinate transformation Dellon (10 ] next
extended the work of Huddle by proving that the eigenvalues of the observer

matrix Fl are completely arbitrary provided the system (2.1) is completely

uniformly observable. To do this Dellon assumed the measurement matrix

b SR e
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to be of the form

i, = v[ul‘”lul‘z’]

(2.11)

where Hi(l) is an m x m full rank matrix at each "i". Then tisl!lg the

linear transformation

-1
1
N , H4® u®

L

Dellon obtained an equivalent state space where the measurement matrix was

in the form

H, =[Hl(l) | o] ' (2.13)

Without loss of generality the system (2.1), (2.2) was assumed to be already

in this desired form and the observer matrix 'I‘1 was taken to be

Ti=[Klll] (2.14)

where K i is a free (n-m) x m gain matrix. From (2.9) it is shown that the

obscerver matrix Fl is of the form

Al

i
+Ki A, (2.15)

Fi=4y
where Azzl and Alzl are respectively (n-m) x (n-m) and m x (n-m)
partitions of the matrix Al in (2.1), Invoking the dual of Wonham's result
for controllability, [33) Dellon argued that if A, A,,) is an observable

pair then there exists a matrix K i+1 such that the eigenvalues of




i i
22 tKul12

obscrvable pair at every "1 provided the system Is completely untformly

A,, +K may be arbitrarily assigned. But (Azzl, Aut) is an
obscrvable, Thus, the elgenvalues of F; arc completely arbitrary at each
instant "1",

Returning to the idea of state reconstruction, we note that since the
entire state X, is not directly accessible it is unlikely that the condition
z,= Tofo can be achieved, This linplles that the observer error (2.5) will
in general be non zero and the estimate :_?i in (2.6) will be in error. However,
since the observer eigenvalues were shown to be completely arbitrary, it is
therefore possible to reduce the observer error to zero as rapidly as

desired. Thus, we have forced the estimate _)_‘E‘ to approach the true state X

as rapidly as desired.

2.2 OBSERVERS OF ORDER "n"
Williams [31] has considered non-minimal order observers and has
approached the observer design problem with the idea of achieving suboptimal

Kalman filtering. Consider the n-dimensional observer given as

Zig1 = Fig O YDt (2.16)
Here the observer output is defined by the relation
TH*S @.17)

where T, isannxn nonsingular matrix. In this case the state estimate

%, is taken to be

s -l
Len 'y (2.18)
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Williams has shown that the system (2.16) is an observer of the state x, in
(2.1) if and only if the following matrix relations are satisfied

Ty = FiTy +DH LA @2.19
Ti1B) =G +D H B, (2.20)

The corresponding estimation error is given by the expression

i-1
|
=T ( n Fj) @, ToXy) (2.21)
J=0
One obtains an interesting solution to (2,19) by taking
Dit1 = TipiKin 2.22
where K i+ is an arbitrary n x m gain matrix, With this choice for Dl +1 the
observer equations become
FITy= Tin@ - KiggH ) A 2.23
Gy =Tiqa@ - KiyH ) By (2.24)

An interesting observation concerning (2.23), (2.24) is that the special case
where 'l“ = | and K, is taken to be the Kalman filter gain matrix, the observer
obtained is identical to the Kalman filter. That is, the observer equations

become
Fi=@-KigHgp) A (2.25)
Gy=(-KyyH ) B (2.26)
Dig1 = Kipy (2.29)

11




Substituting (2.25), (2.26) and (2.27) into the observer system equation (2.16)

gives the result

Zr A TR YKy (Yt i (A2, +BY)) 2.28)

which clearly shows the observer to he identical to the Kalman filter. If the

designer picks the gain matrix l<l +1 according to some other criterion, the

observer then may be viewed as a suboptimal Kalman filter. (For example,

the gain matrix might be chosen to give some arbitrary set of eigenvalues.)

Therefore, a Kalman filter is an n-dimensional observer for which the

weighting matrix Dl +1 has been chosen to minimize the mean square

estimation error, It is also interesting to note that in the more general case

where the transformation ’I‘l is a k x n rectangular matrix (k < n), the

solution of the fundamental observer equation (2.23) is an aggregation in

the sense of Aoki.[ 2 ] We shall not pursue this idea any further since our

interest in this observer formulation will be primarily the design of n-

dimensional observers based on the selection of eigenvalues.,

By a jfadiclous choice for the observer transformation Ti' Williams

has shown that it is possible to obtain completely arbitrary eigenvalues at

each instant "i" for an observer of the form (2.16), He considered a

completely uniformly observable pair (A, gi) and took as the transformation

T‘ the following matrix product

12
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Ohservabivllty Matrix
where for the purpose of simplicity we have considered a single output system.

U VU U ———

The results are easily extended to the multiple output case. For the
particular ransformation T‘ chosen the observer system matrix F isin

column companion form and has arbitrary eigenvalues.

%‘ s x| (1 0 0 ... 0]
Rt 0 deiiiaed X
Fo= | B K (2.30)
xz‘ o .
Al‘ G R X
(- Vl J \ > l o’
T M Ty Tiet¥ier B AT

Since the gain matrix K i+1 is completely arbitrary and the matrix ’1‘l +1 is
nonsingular, from (2.30) it is apparent that any desired set of observer
: eigenvalues may be obtained.

2.3 APPLICATION TO OPTIMAL CONTROL

One of the fundamental applications of observer theory is in the

design of feedback controllers for the linear regulator problem where some




of the states are inaccessible and must thercfore be estimated using an
observer., For example, assume it is required to obtain the control Y in

(2.1) which minimizes the cost function
N ! 4
)= X x'Qx, +u 'Ry, (2.31)

where Q and Ri are respectively n x n and p x p symmetric positive definite
matrices for all "i" in the interval [0,N]. The feedback law which minimizes

J is known to be a linear state feedback of the form [30]

Ei = /‘.i&i (2.32)

where

A (2.33)

. .
A= Ry BT l) T

and I, is the n x n symmetric positive definite solution to the discrete

Ricatti equation

_A’.” A A'r

¢ l
i+185 (+1B R +B, T, B) '8, Tindi tQ

with (2.34)

) A
‘NN
Applying the optimal feedback control results in the minimal cost

]‘ =-§°" 02‘_0 (2.35)

By assumption the entire state vector x; is not directly available for measure-

ment and therefore the optimal feedback control can not be implemented.

The alternative considered here is to use a minimal-order observer to
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coanstruct an estimate )_'i‘ of the state X; and apply the suboptimal fecdback

control

é‘ - ‘\“él (2086)
It is of interest to determine the effect of the observer upon the coantrol law.
Substituting (2.6) into (2.36) and using the fact that P‘Tl -i-V‘l-Il =L itis

casily verified that the suboptimal control law is given by the expression

i-1
8 =, *.r.lp‘( n Fj)@o"ro!o) (2.37)

1=0

It is clear from (2.37) that 4, is the sum of the optimal control plus an
additive term due to the incorrect observer initlal condition. The obvious
conclusion is that introducing an observer in the loop generally results in an
increase in cost from that obtained when the optimal coatrol law is
implemented. Further, this increase in cost has been shown by Dellon [10)
to he of the form

J'J""-c-o'*o-‘-o (2.38)
where the positive definite matrix " satisfies the recursive equation

0 B B P TR B BOAR
with (2.39)
‘N 0
To determine the effect of an observer on the stability properties of a closed

loup control system in which it is used we assume it is desired to coatrol

the linear system (2.1) by the linear feedback law

18




=K (2.40)

Presumably Kl Wwill be chosen by the designer such that the closed loop system,
defined hy
Xip1 = (A +BK )X,
(2.4))
& = Hx,

achicves some desirable response properties, which will always include
stability. However, the actual state vector X, is not directly available and a
discrete time-varying minimal-order observer is used to generate an
estimate & of the state X The estimate )_'E‘ is seen from (2.6) to be of the

form
X =Pz + Vi, (2.42)
where 2, is the output of the minimal-order observer and Y; Is the plant

output vector.  Applying the control law (2.40) with the state estimate &
(2.42) gives the closed-loop state equation

X = (A + BK Vit x, + BK Pz, (2.43)
Also applying the same input to the observer glves

Zi41 = Ty Ay + BKOPZ, + T, ) (A +BK) V H x, (2.44)

Combining (2.43) and (2.44) results in the following state equation

L B i M, A S X
pia Bl B Rt Rttt Tt P -—-| @49
Zi41 Tira (A +BKOVH, | Ty (A +BKP, | | 2,

16




The stability properties of the overall closed-loop system become apparent
when the system is viewed in a different state space. With this thought in

mind, we perform the coordinate transformation L 5]

% L l . %
g T ' 1 (2.46)
- i ' ‘n~m 5
This nonsingular transformation results in the equivalent state space
representation
%41 AgtBK, 1 BER T X
ket B B B B (2.47)
Sirl 0 By 3

In the special case of time-invariant systems it is clear that the eigenvalues
of the overall system are the eigenvalues of A + BK plus the eigenvalues of the
observer system, F. By assumption the closed-loop system A + BK has

stable eigenvalues and since the cbserver is designed tc have stable eigen-
values then the overall system is obviously stable. Hence in the time
invariant situation it is clear that the observer does not affect the optimal
closed-loop poles at all, it merely adds some poles of its own [20].
Intuitively one would expect this same result to carry over to the more
general time-varying case. However, although it is true that at any fixed
instant "i" the eigenvalues of the system matrix (2.47) are the eigenvalues of
Ai +Biki plus the eigenvalues of F i this does not imply stability of the overall
system (2.47) in any rigorous fashion. To prove stability in the more
general case a more careful consideration of the state equations must be

taken.

17




It is, of course, assumed that the designer has constructed a stable
time-varying observer. Hence the observer-error is bounded and to prove
boundedness of the closed-loop state vector (2.47) it is sufficient to prove

boundedness of the subvector x;. From (2.47) we have

X4 = (A TBKY X - BK P -

which has the solution

i-1
=9 %" 5 Y a1 BEPRE (2.49)

=0

where

i-1
Sp” ( )LOT (2.50)

)=0

and the transition matrix "ql j is defined as
]

s} oL
oo nj (A, +BK)) (2.51)

Taking the norm of (2.49)

X 79 o kgl E U, 1 | IBKPLLE (2.52)

Since by assumption 9; and F,  are uniformly asymptotically stable we
< ? ’

have [10]
' i
.'.’l,o' sc,8) for some c,; >0 and0<81<1 (2.53)
and
2 i
Fi,o Sczez for some c, >0and0 <8, <l (2.54)

18




Let L'BiKiPié" Scq <= and (2.52) becomes

E=t e .
it oo gl | i=jml o j e - :
X e .!50:1 teeac, J_Zu B, . ﬁ:'z e, (2.55)
Evaluating the sum in (2.55) gives
' (0 i It " ei 3 ﬁiz [} "
hgsil, =c,B) X, +¢)cyCq 51—'12_ ;Eo-ﬁ (2.56)

Thus .'x;iiis bounded for all "i" and since lim ['x;!' =0 for all finite £, then the

closed-loop system (2.45) is uniformly asymptotically stable.

2.4 ADDITIONAL COMMENTS

It should be emphasized at this time that the design procedures of
Huddle, Dellon and Williams involve little more than the statement that the
designer is free to choose the observer eigenvalues in any desired fashion.
The fundamentally important problem of where to place the observer eigen-
values has not yet been solved and remains a perplexing problem to the
designer. Itis, of course, useful to know that one may design (n-m)-
dimensional observers or n-dimensional observers with arbitrary eigenvalues
at each instant "i"; however, without the added information of where to
optimally place the eigenvalues, the design of the observer remains at best an
ad hoc procedure.

In contrast to the idea of artifically picking the observer eigenvalues
to provide acceptable system performance, we shall base our observer
design on the more fundamental objective of minimizing the effects of system
noise disturbances upon the observer derived estimate gi. In formulating the

observer design problem in a more general stochastic setting, the resultant




observer errors will be dependent upon the plant noise disturbances and from
a consideration of the noise induced errors an optimal observer design will be
obtained. We shall obtain a solution for the observer matrices Fl' Tt and L)i
which not only satisfies the fundamental observer equation ’I‘i +1Ai =

FiTl + DlHl' but results in an observer system which is also optimal in the

medanTsquare sensc.




SECTION III
OBSERVERS FOR DISCRETE TIME-VARYING SYSTEMS WITH
WHITE NOISE INPUTS

3.1 INTRODUCTION
In this chapter we shall focus our attention upon linear, discrete-time
stochastic systems for which the dynamic behavior can be characterized by

the following set of equations,

X = A By +w, @.1)
e Hgi +y 3.2

where X is the n-dimensional state of the system at time "i", u s the p-
dimensional known control vector which acts upon the system at time "i", and
Y; is the m-dimensional measurement vector. The initial state X,isa

Gaussian random vector with known mean and covariance
Blxy)=x
-- .— ' —
El(x, X)(x, X)) = M,

Further, the noise sequences W; and v, are assumed to be Gaussian random

vectors with known means and covariances

Blw}=0 foran "

Bly,} =0 foran ™"




b {V_v|?ij ‘}= Qlolj

EIX.!,'] =R,
where 6!' is the Kronecker delta. In general, the covariance Ri will be con-
sidered to be positive definite whereas the covariance Qi will be positive

semi-definite. The various random vectors are also assumed to be mutually

uncorrelated so we have the relations

Elx w,'}=0 forall "i"

Elx v.'} =0 for all "i"
—o—i

E [g‘_v_j ‘}=0 for all "i,j"

Thus it is assumed in this chapter that the nois¢ sequences W and y; arc time-
wise uncorrelated sequences which shall be referred to as Gaussian white
sequences. In the interest of simplicity, at this point we have assumed a
model for the white noise sequences in which the cross-covariance matrix of
Wi and Y is zero, Later in this chapter we shall extend our results to include
the special case whereby v and v, are Gaussian white sequences which arc
crusscorrelated at time "i." Also, in the next chapter we shall consider the
more general situation in which the noise sequences Wi and y; are time-wise
currelated sequences of the Gauss-Markov type.

3.2 DEFINITION OF THE DISCRETE OBSERVER FOR STOCHASTIC
SYSTEMS

Loosely speaking, for stochastic systems an obscrver is defined to be
a system whose output vector, Zi4p is an estimate of the quantity TH-llH-l
with an estimation error, EH-I , depending only on the previous cstimation

error, £, and the plant and measurement noises Wi ¥+ To be more precise
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the discrete time-varying system
Zi4 = FiZ tGy; +Dy (3.6)

is called an observer of the state X of the system

Zipn = Mg By, +y @.7
B Mty 3.8

if at cach instant "i" the following relation holds

2= Ti-’il +§ 3.9
where the observer estimation error, €, evolves according to the recursive
equation

Si = FiE DY - Ty (3.10)

In order that the above relations hold, it is both necessary and sufficient

that the following matrix equations be satisfied at each instant "i"
T‘_HA‘ = F‘T‘ + D‘Hl (3.11)

Gy = T, B, (3.12)

Necessity is proved as follows. Assuming (3.6) and (3.9) to hold, one obtains
the result
Tiady - BT - DHY X, + (T, )8, - Gy,

(3.13)

toa1 " FE DY tTigw =0

Since (3.13) must be satisfied for all state vectors X, and for all control

vectors u,, take x; = 0 and 4, =0. This implies the followiag result.

o L st




S = P& DY - Ty

(3.14)
Hence, (3.13) reduces to the following

(Tip1 Ay - FiTy - DHp x +(T\ B, -Gy =0 @3.19)
But (3.15) must hold for all state vectors x; and for all control vectors y;, so
take Y = 0 and X arbitrary. This implies the following result.

T A, = FiT, +DH, (3.16)
Also in (3.15) we may take x, = 0 and u; arbitrary. This implies the following

result.

Conversely, assume equations (3.11), (3.12) to be satisfied at each instant

“{", Then from (3.6), (3.7) and (3.8) we obtain the following.
241 " TiaXia = Figy + Gy + DHX, +v)
(3.18)
" Ti(Ay + By +w)
Substituting (3.12) into (3.18) gives the following result.
Zi " T = Figy +OH, - T A +Dy, - Tgw,  G.19
Next, since FlTl = -(DiH‘ - ’l‘l +1Al) from (3.11), we obtain the result
241 - TiXin = F1@ - TX) + Dy, - T Wy (3.20)
Clearly, (3.20) implies the following relations
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My

S " FE ¥DY, - T w, 8.3

From (3.22) it is seen that the observer error £i41 2t time "i+1" depends
only upon the previous observer error §; at time "1" and also on the noise

disturbances WYy

3.3 AN OPTIMAL MINIMAL-ORDER OBSERVER DESIGN
The discrete time-varying system described by the equations

241 = Fi2 +G + Dy (.23
z = Tl—xl +£‘ (3.2¢)

where Z,, an (n-m)-dimensional vector, is called a minimal-order observer
of the state X, of the system (3.1), (3.2) if at each instant "i" the following

matrix relations are satisfied

Gl = TH—lBl (3.26)
exists 3.29)
LY

Equation (3. 25) is the fundamental observer equation relating the observer
system matrices Fl and D‘ to the observer transformation matrix Tl‘ In
the design of a minimal-order observer the additional constraint (3.27) must
also be satisfied at each instant "i", Using this fact, a general solution to
the observer equation (3.25) may be obtained. Rewriting (3.25) in

partitioned form

25




T
TinA = lFlloll i (3.28)

and postulating the existence of the matrix inverse to be of the form

-1
E-:—] JLAA (3.29)

where P‘ is an n x (n-m) matrix and Vi Is an n X m matrix, one obtains upon

multiplying (3.28) from the right by the above inverse, the solution

Fi= TiaA R (3.30)

D, = TAY, (3.31)

From (3.30), (3.31) it is seen that the design of the minimal-order observer
has been reduced to the selection of the single matrix Tl‘ This is seen from
(3.29). Specification of the matrix T‘, together with the known measurement
matrix H; uniquely defines the matrices P, and V, and from equations (3.30)
and (3.31) is seen to uniquely define the observer system matrices F, and l)‘.
The observer error, & was shown previously to satisfy the following

difference equation.,

St P& 0y - Tiay (3.3
Using the solution (3.30), (3.31) together with the error difference equation
(3.32) one obtains the observer error covariance given as (3.33).

e pEe aaroll s ’ ¢ ' ¢ ¢
Sindin T AR EE PUATFAVRVIAT+Q T, " G39)

We shall define the matrix q to be the following.
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¢
4 -4\i (S5 BAT AV RV A 4 (3.34)

[t will he useful at this point to partition (3.33) as follows,

‘nT T’ (3.395)

Sin1&i1 i+l

where hl 11 s mxm, féz is (n=m) x (n-m) and ﬂlu = Q‘n' is m x (n*m). The
submatrices ﬂ‘“, and O‘ are obtained as partitions of the matrix ﬂl
defined by (3.34).

Bquation (3.35) plays a fundamental role in the optimal observer
design to be developed. We shall next obtain the covariance matrix of the
overall estimation error. The estimate ):&‘ +1 Of the state vector X1 is
obtained as follows. (The notation 2‘ + shall be used to distinguish between
the optimal Kalman filter estimate and the observer derived estimate.)

Combining the observer output Zin with the measurement Yin gives the

following.
LN Tiw Sl
. X t|— (3.36)
Yi41 Hin Yitl

Using the matrix inverse postulated as equation (3.29), we obtain the estimate

Xi41®

-~

LY
X1 * X t l" i+ 'Vm] 3.37
Yitl

The resulting estimation error is found to be

s VA A At e T B




S
: T (3 . 38)
‘ Y41

g 5
| eir1 & Xy "X = IP i1 | Vi+1l

4

Finally, the error covariance €+1€i41 may be obtained as follows.

E' SPm—
“ 115+ I 2

R

’
w1 | Ve l

H '
1 vl | | Vi) |p

(3.39)

T .

3 e
where from (3.32) it may be shown that 5 e - 0.

To proceed further, some necessary assumptions must be made about

the form of system (3.1), (3.2). Itis, of course, assumed that the measure-

ment matrix be of maximal rank at each instant "i" in the interval of interest.

In the absence of measurement noise, if Hi did not exhibit this characteristic,
then some of the measurements would be linearly dependent and, hence,
redundant, so that the measurement vector could be reduced to a linearly
independent set without any loss of information. In cases where the system
outputs are corrupted by measurement noise, there may however be important
reasons to consider all the system outputs, including any redundant ones.
We shall not, however, treat this case but shall consider only matrices H, of
full rank. .

More specifically, it is assumed that the first "m" columns of H, (with
a pussible renumbering of the states) are linearly independent for all "i" in
the interval of interest. This is a reasonable assumption in view of the fact
that usually the system outputs are affected by the same state variables even

though the gains involved may vary with time. In many physical systems Hi

&
f
PN ——r
o x ™
e © M i EREESTANG




will actually be a constant matrix even though the matrices A‘, B‘ are time-

varying., Therefore H| may be partitioned as follows.
< [
H, [H‘ I ] (3.40)

where H{l) is nonsingular at each instant "i" in the interval of interest. Next

we shall assume that Hi(z) is identically zero since the linear transformation

X =1
b () (@

X = 9, (3.41)
v n-m

will transform the original system to the desired form shown in equation
(3.42). Therefore, without loss of generality, it will be assumed that the

measurements are of the form

y=0,100x +y, (3.42)

To complete the basic observer design, it remains only to specify the
T, )-1
observer matrix T,. Since the matrix H'L must exist at each instant

i
"i", the most logical choice for the matrix T‘ is given below as (3.43).

T, = (K, | i Q.43

l(t is an arbitrary (n-m) x m gain matrix which will be chosen to minimize

the overall estimation error. With this choice for the matrix T‘, the
matrices P! and V‘ are found to be the following

p=|— |, Vo |— (3.44)
h-m Ky
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|
|

Substituting (3.44) into (3.39) gives the following result,

. ’
Rip1 Riv1Kig1
r 4 ’
Siv184 T 3 ’ (3.45)
KielRir1 [ Sin&Gin YK R K
Also, substituting (3.43) into (3.35) gives the result
TRERTa—— —t l ' i ']
SinSiel = KimiKim Kt leKH-l + Ql22 (3.46)

The optimal gain matrix K, +l. may now be determined. From (3.45) and
(3.46) one obtains

’ -
trace ¢; €., =traceR,
3.47)

' i ' i
+race (K () +R DK +K 0o+ K7 +0b))
"Coumpleting the square” in (3.47) gives the result

_—
trace €;,,€,,) =traceR,

+wace (K, + Ql21(d11 +Ri+1)'1]|20i11 +R, ., JK

i+t

(3.48)

i s i -1
+00) @) +R) ) *’“lzz'dzl(du* Riyp) " )

The desired optimal gain matrix, K, +1" is obtained by minimizing the
trace g, . €, +1" By assumption the measurement noise covariance Rl 41 18
positive definite. Clearly, the submatrix 0'1 ) is at least positive semi-

-1
definite so that the matrices (Q‘l 1 +Rl +l) and (ﬂil 1 +Rl +1) are positive

definite. Therefore the matrices




- l | - l. i
(Kypy + %, @), + Ryg) 200y +R K 40 (@ + Ry 7]

3.49)
and
o

o1y +R T (3.50)
must have positive diagonal elements. The minimum of the diagonal
elements of ¢, 1€ . ‘ must therefore be attained when

i i -1

Kipy oy (“ln“‘m) =0 (3.51)

Clearly the optimal gain matrix !(l +1 is given by the expression
-1
Kpa® = "G +R, ) .53

The minimal estimation error obtained when K i +l. is taken to be the observer
gain matrix is found by substituting equation (2.39) into equation (2.35). Thus

it is found that

—, : -1
min trace e, €, ., = trace R, +trace [0‘22 du(dll"'aiﬂ) ﬂluJ

(3.53)

Design of the optimal minimal-order observer is essentially complete at this
point; it remains only to specify the resulting abserver dynamical structure.
Previously it was shown that the observer matrices were of the form

Fi =T P and D T. A V.. Straightforward substitution of the observer

i+l 17101
transformation matrix T, +1 [equation (3.43) ] and the corresponding matrices

P, and V, {cquation (3.44)] results in the following

31
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Fi=A + K

i af
22 T Ni+t12 (3.54)

SRR R b o) "
D = Ag) = Ay KA1y - A Ky (3.55)
Also, the matrix Gi is defined explicitly in terms of the observer transfor -

mation Tl +1 and the plant matrix Bl according to the relation
Gi = Tl+18i > (3.56)

A block diagram of the basic observer structure is shown in Figure 3.1 along

with the appropriate defining equations and the algorithm for obtaining the

optimal observer gain matrix.

3.4 INITIALIZATION OF THE DISCRETE OBSERVER

In the case of the recursive Kalman filter equations, the a priori
statistics 30 and M, of the initial state X, are assumed to be known. This
a priori information is needed to initialize the Kalman filter. Since the
optimal observer equations (3.35) and (3.52) are also recursive, this same
information is needed to initialize the observer. We shall therefore assume
that the a priori statistics 30 and Mo are available to the observer system.

Initialization of the observer proceeds as follows. Let z, = T)x, be

1X)
the observer initial condition, where 31 is the "expected value" of the state

vector x,. Since €, =z, - T)x,, then

68 =T XD, X)) T, (3.57)
But x, - x) = A (X - X)) + w_ hence (3.57) becomes

- i ’ ¢

£ = '1'1(1\(’M0Ao +Q0)T1 (3.58)
To initialize the observer, define the covariance matrix Qo to be

‘
ﬁosAoMvo +QO (3.59
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and take the optimal gain matrix K l. to be

- @, +r))! (3.60)

3.5 SPECIAL CASE: CROSS CORRELATED PLANT AND MEASUREMEBNT

NOISES

In the interest of simplicity we have assumed that the original model of
the Gaussian white noise sequences is one in which the cross-covariance
matrix of w, and v, Is zero. We shall now treat this important special case in
which the cross-covariance matrix of w; and v, is non-zero and we shall show
that the observer design technique described in the previous sections of this
chapter is directly applicable to this special case with only minor modifications
to the theory. At this point we shall assume that the zero-mean Gaussian white

sequences w, and y, are characterized by the covariance relations:

B{wwl }=Qp 4y

bh }-R‘aj

B{w '} = sl"u

We begin by computing the observer-error covariance matrix, From the

basic observer-error equation (3.10) we obtain the result

O BT L A
St = PSSR +DRY D T W T,
(3.61)
3 —— ] = — v
DY T~ Ta¥is Oy

But since F ™ T‘ +1A|Pl and Dl = 'I‘l -H"lvl’ substituting these relations
tnto (3.61) gives




—— — ¢ [ ¢ ¢ ’
Sirrsinl = T AP S PUA T FAVRVIA T+QY T,
= . ty 0 0 '
Tt VSIS VA D) Ty (3.02)
Hence, the same general form of solution is obtained as in the previous

uncrosscorrelated noise case. Defining the matrix (‘l to be

tp ' ? g ¢
(= APTE PUAHAVRY A +Q

3.63
: e Mty st
AV S, S Vi A
and partitioning (3.63) as before we obtain the result
e o
Sn&n =T Tl (3.64)

B | %

It is immediately obvious that the observer design developed previously in
this chapter applies without modification from this point on. For the sake of
brevity we shall state only the final results, Taking the observer trans-

formation matrix T to be of the form

1+1
Tipn = Ky [y o

The optimal gain matrix K; +1. is found to be
bt §
L .
Kpn* = “0y( + Ry (3.60)

where the matrices Gll ) and 0; | are obtained from the partitioned @ matrix

as indicated in (3.64). The cross-covariance matrix, S, alters only the

computation of the (4 matrix as indicated in (3.63).




3.6  LFFBECT OF COORDINATE TRANSFORMATION ON OPTIMAL GAIN
MATRIX, K,*

Up to this puint it has been tacitly assumed that "without loss of
gencrality™ the given system (3.1), (3.2 was already in the desired canonical
form. However, the phrase "without loss of generality" needs to be justified
since for many dynamical systems the desired canonical form cannot be
obtained directly by merely renumbering the state variables. We do, however,
assume that the system measurement matrix, Hl' can be put into the form
(3.40) and then the linear transformation (3.41) applied to obtain the desired
canonical equations. If this transformation need be used, then there will
be a modification to the optimal gain matrix, K i .ﬂ‘, due to the linear trans-
formation (3.41). We shall now consider the effect of this linear trans-
formation upon our optimization technique and, in particular, we shall derive
the vptimal gain matrix taking into account the eifect of the linear
transformation (3.41).

Assume it is necessary to apply the linear transformation X = Ml-gl'
where M, is defined in (3.41). Upon performing this transformation we have

the measurements

y =010l +y, (3.67)

Let the observer be defined by the system (3.6) where now we take the

observer output to be

z = [k |1]g + ¢ (3.68)

Combining (3.67) and (3.68) together with the fact that X = Ml_g‘ we get the

result




NCE RS

From (3.69) the overall estimation error covariance is found to be the

following:
R P R, | -RK,’
T i 1 t i
&8 e
0 I -K,R s G |
n-m i g
+KlR‘K‘

-1 -1
ne l H® @
(3.70)

i Fon

Equation (3.70) is simply tf\e statement that the error in the X coordinate

system is M; times the error in the g, coordinate system. That is,

& - i‘) - Mﬁ@‘ fi Q‘) 3.71)
Performing the matrix multiplication indicated in (3.70) and taking the trace

gives the result

uaceg__‘g'_'l' = trace [_C_-l_T"-O- K‘R‘K"]
W @) e (@)
+ trace (Hl H, )-si-‘-:-l (Hl H, 3.72)

-4 -1 -1 -1 ;
i 1 2 1 1 2
+(Ht( AT )"1) R, (Hl() +HM ’x‘) |
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where the obscerver error covariance is of the form

— ) -1,1 i-1 -1,1 {-1
T, =|<in‘“ K| +K,00, +n;l K| + %, (3.73)

Setting the gradient of (3.72) (with respect to the free gain matrix, K‘) equal
to zero gives the first order necessary conditions for a minimum. Since

- (3.72) is quadratic in Ki’ these first order nccessary conditions are also
sufficient conditions for a minimum. To obtain the gradieat of (3.72) one

first substitutes (3.73) into (3.72) and expands the trace '_el_gt ’ as follows.
. -1 ; ‘1, . -1
trace g€, ‘= tr [Kl(ﬂ‘“ +R)K/}+2er [(}21 K, J4ur {lez }
+e ()R Y r2e (- )(o) k)
1 Ky %y

+e{(+)'(+) by}

+er {( ) )KRK, T +20r

-2
1 ¢
(o RK, l

o)

(3.74)

+tr

=k
where (+) & 1) 0 @,
Using the formulae given in Athans [ 6 ], the gradient of (3.74) is

evaluated and set equal to zero giving the result:

(“’('"(")"1(“‘1-11‘“‘0

g -1
--O+<w«-9¢}-(4'4” R, 3.79
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But since the matrices (l +(+)'(. )) and (ﬂnl +R‘) are positive definite
(hence invertible) we obtain from (3.75) the result

K== @G+ D@t ery? (3.76)

where

-1
[-3‘-‘(x+(-)'(-.))(o>'u,“’ R, @3.77)

Finally we note that for the special case where H‘(z) is identically zero, the
term [ + ]is identically zero and the optimal gain (3.76) reduces to the
result (3.52) obtained previously.

3.7 GENERALITY OF THE TRANSFORMATION T, = [K‘ I n-m]

At this point one might ask if the consideration of a more general
observer transfor mation, T‘. could result in a further reduction in mean-
Square estimation error. To be more specific, can the mean-square
estimation error be reduced evea further by taking T, = (K i(l) IK‘(z’] instead
of using the less general transformation T‘ = [Ki(l) lln_ m]? The answer to
this question is an unequivocable "no" and in this section of the thesis we
shall present a proof of the claim. The proof is straightforward.

We assume that the measurements are already in the desired

canonical form, that is:
y = 0 lolx +y, (3.7)

We consider the most general possible observer transformation, T; which is

of the form




N [K‘(”lxl(z’]g‘ +e 3.79)

where K i(l) and Kl(z’ are (n-m) x m and (n-m) x (n-m) partitions of the
H -1
matrix T‘ + Since the matrix inverse [‘l'l Is required to exist at each

i
instant "i" then we have the resuit

= det (k@) (3.80)

and therefore we consider all transformations T, = (K l(l) |l<l(2 ) where Ki(l)
and Ki(z) are arbitrary and K i(b is full rank at each "i." We shall now prove
that at each step "i" there is no loss of generality by taking K l(2) = [n-m and
this is because the minimum achievable mean-square estimation error is,
in fact, independent of the elements of the partition K‘(z).

In the first step of the proof we treat the initialization of the observer.
Computing the mean-square estimation error at time "i=1" we obtain the

result
trace ¢ e ‘ = trace R,
rrracelk @ TE k@7 L @7 W 0 @7
s (a0 | 35 M) 1 T o | 1

(3.81)

T o ' S '
But the observer error covariance is £& =TT, " where (= AM A

+ Qo' so expanding € 11 ’ in (3.81) into quadratic terms involving the

appropriate partitions of the matrix Qo gives the result (3.82).




T e /- K (l)[ K (1)‘ K‘(l).r‘(; K (2)' +K (b(fz’lxl(l)'

+K (2)(‘2 K (2, (3.82)

Substituting (3.82) into (3.81) and "completing the square"” gives the

expression

trace e, ‘= trace R
= -1
2l @ -i 't a
+trace3[l<l() K+, +R) ][dl’1+al][1<l() K Y

TGRS I AR AT A S

Clcarly, to minimize trace e1 1 ’ we take

-1
2 @ e
Ky K+ (@ +R) =0 (3.84)
and the minimum attainable mean-square error is given by the result

min trace e1 1 = trace R + trace { = 0(2’1(0(1)1 -i-Rl).l 0‘2)1'}

(3.85)
We note at this point that the optimal error (3.85) is attained independent
of the particular choice of K 1(2). Hence, the minimum attainable mean-

square error is independent of the partition K 1(2) and we may without loss of

2
generality take K 1( ) - I —_—
For all cases n=2,3,...,1, i+l the solution proceeds as follows. At

time "i+1" the equations of interest are the following:
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Yy = O 100X +v )

241 ® ["m i+l J 340 * Sl (3.86)

Also,

m . T4 T
where

G SAREE R A+ AVRV A +Q (3.87)
Repeating the procedure described for "i=1" we find the mean-square

estimation error at time "i+l" to be

e
e Ei+1Si4) ™ Tace RH-[
@ (o S
+trace3[l(l+l Kipn *+ 5, (@), +RH_I)] [o“ "'Rm] :
-l ‘ ]
2 L) -1]
[Km Kisl T8, (nlu +R1+1)
= i -1 i ’
*‘éz "41 (“u *Rm) 9, ‘ (3.88)
Clearly, to minimize trace &t 1841 ’ we take

-l -l
2 1
I‘L-)l Kf-o-)l b rél (du R ) "e (3.89)

The minimum attainable mean-square estimation error at time "i+1" is

given by the result
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Sy R e
min tracc (.H_l_t;‘.“ = lracce Ri+1

veacefth, - o (h +r,) g (3.90)

and this optimal result (3.90) is attained independent of the particular

(2
choice of Ki-H .

of generality, we may take K

Therefore, at each step n=2,3,...,1,i+l, ..., without loss

(2) wl
i+1~ ‘n-m"

3.8 EQUIVALENCE OF OBSERVER AND KALMAN FILTER WHEN
R.=0
i

Up to this point it has been a basic assumption that the measurement
noisc¢ be non-zero and, in fact, it was more strongly assumed that the
mcasurement noise covariance, Ri' be positive definite at each instant "i."
This corresponds to the case where each measurement component is
contaminated by an independent white noise disturbance. A special case of
particular interest is the opposite extreme where the measurements are
completely noise-free, that is, Y, =0 for all "i." We shall next treat this
important special case.

Rather loosely stated, in the absence of measurement noise, "m"
of the system states are known exactly and it is only necessary to estimate
the remaining "n-m" states. In this particular situation it is clear that the

Kalman filter is degenerate in the sense that it reduces to an "n-m" dimen-

sional filter. Noting that the minimal-order observer is of dimension "a-m,"

one questions whether or not in this situation (i.e., in the absense of
measurement noise) the optimal minimal-order observer is equivalent to the

Kalman filter in the sense that both filters provide identical mean-square
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e¢stimation errors. We shall demonstrate that this property is, in fact, true.

Wce assume the system cquations are in the form

(l) i i (1) (1)
X+l A | A | | & *
— = + (3.91)
(2) i i (2) (2)
X4l Ay I A || =
y; = 0 lolx (3.92)

For purposes of simplicity the plant noise covariance is assumed to be:

| o |
,~ (3.93)

Using the Kalman filter algorithms (sec Chapter 1, equations
(1.3 ) through (1.6) it is easily verified that for the system defined by

(3.91), (3.92) the mean-square error for the Kalman filter is

race Py /il =

trace * (Azz (2 "+ Q(z) )

o) pb 2 1 @ ,1
'AZZP{/i) (a ff/{ 12 +Q()) 12"1/1 22‘ (3.99)

where the covariance l".l +1/i+1 s partitioned in the form

Pit1/iel = @ (3.95

0 P11




R EER——
Next, from the observer error covari_ance & +1—c-i 410 which is

W TR S S
: ASSi A QT ARSSET Ay '
S = Tin AT T Tin1
A2si& A A225% 42219
(3.99)

it is found that the optimal observer estimation error is

S ——
g (rACELimSi =

i i, (2)_{——11.‘[—:1'
traceg(Aan Azz"'Qi ) Azzfift AIZ (Anfx-‘-« Au

e
@) gy | o

Equivalence of (3.94) and (3.97) follows directly from the result that in the

casc of no measurement noise, € = Pg /i + This result is obtained by

inspection ot the observer estimation error covariance e, ' and the

Si+18i41
corresponding relation P, +1/i41 for the Kalman filter.
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OBSERVERS FOR DISCRETE SYSTEMS WITH
GAUSS-MARKOV NOISE INPUTS

4.1 INTRODUCTION

In the previous chapter we have limited ourselves to estimation
problems in which the system disturbances were modeled as purely random
additive white sequences. Clearly, in many estimation problems the system
noises will be modeled more accurately as additive Gauss-Markov sequences
(time-wise correlated noise sequences). Sequentially correlated plant noises
can, in principle, be treated by introducing shaping filters driven by purely
random white sequences resulting in sequentially correlated sequences.[29]
However, in the design of the Kalman filter for systems with sequentially
correlated noise inputs it is necessary to increase the dimension of the state
vector to be estimated. This is inconvenient for real-time filtering and,
equally important, the computation of the Kalman filter gains is very likely
to be ill-conditioned. Thus it is desirable to seek better ways to handle
sequentially correlated plant disturbances in estimation problems.

4.2 OBSERVER DESIGN FOR SYSTEMS WITH GAUSS-MAKRXOV PLANT
NOISE

We shall now extend the results of the observer theory developed in
the previous cﬁapter to the problem of estimation in the presence of time-
wise correlated plant disturbances. This problem shall be treated in a
straightforward manner, that is, the state equations of the plant will not be

augmented as must be done in the Kalman filtering theory. Taking this
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dircet approach will result in an observer of minimal dimension. To be more
precise, the dimension of the minimal-order observer will be the same as

for the case when the plant notses are purely random Gaussian white
sequences. The order of the observer will therefore be independent of the
dimension of the linear system required to generate the Gauss -Markov
sequence. The resulting observer is not designed to provide estimates of

the extra states which model the plant disturbance; only the original system
states are estimated. This is highly desirable since, in practice, one usually
is only interested in estimating the original system states. We shall first
consider the problem of estimating the system state vector, X where the
nuise term wy is a Gauss-Markov sequence.

Again we consider the discrete system

Bppy = Mgl ThY Y, (¢.1)
Y = Hi—’il Yy (4.2)

The measurement noise, Yio is taken to be a Gaussian white sequence with

covariance

'
Elyy, }= RSy,

However, in the present case we model the plant disturbance, W, as the out-
put of a linear discrete system driven by a zero-mean Gaussian white
sequence. The plant disturbance, Wi is therefore a zero-mean Gauss-

Markov sequence generated as the output of the following system.

Y = Ty + 4.3

where 7, Is a Gausslan white sequence. The covariance matrix of the noise
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vector, w, .. denoted as Ql +p 18 propagated sequentially according to the

relation
= § g Tomm—
Q= QT+ 0 (4.4
As was done in the previous chapter, we will design a minimal order observer
of the form
241 = Fi2 + Gy, + Dy, (4.9

where 2, is an (n-m)-dimensional vector and

2, = T,x +§ (4.6)

As before, the observer error evolves according to the recursive equation

S = Fi& 0 - Tigw (4.7

ek o e

In this case, from the basic observer error equation (4.7), we obtain the

, obscrver crror covariance
1

S e s \ el 4 ’ ' ! ' [
EnSinl = T AP EEPUATHAVRVITAT+Q)I T,

(4.8)

- —— tp 0y ¢ '
T AP S+ WEPUA T,

In obtaining (4.8) we have used the results that F; = Tl +1Alpl and Dl=Tl +1A1V‘.
At this point it is noted that the error covariance (4.8) is similar in form to
the corresponding expression obtained for the white noise problem considered
in the previous chapter (see equation (3.33)]. This suggests the possibility of
applying the same observer design technique developed in the previous

chapter to the present problem with sequentially correlated plant noise.

However, when the plant noise is sequentially correlated, the observer error




L L

pro 1 S R

A P8

covariance (4.8) contains extra terms duc to the fact that the obser;cr error
at time 1" is correlated with the plant noise at time "1", Before proceeding
with the observer design we shall digress momentarily to evaluate the cross
correlation gw,” needed in the solution of the obscrver error covariance
(4.8).

From (4.7) we have

i-1 i-1
€= F‘.l_gl-t"‘z:l Fy, i1 DY j=}:1 Fiom Ty =23.e
(4.9
where we shall use the notation

i-1
Fo.8np

) pomy K

and F Li &1 for all "i", Initializing the observer as described previously
’

in Chapter 3, the initial observer error becomes
40 TARTE) - Tit, _—

Next, using the relationships

Bl(x, -j_'o)\l"} =0 for all "i"

(4.11)
B{y_j\y_i'} =0 for all “i, )"
One obtains the result
SR T
L M ;% Fi, i T ¥ i=1,2, ... (4.12)

From the solution to (4.3) which is




-1
=T +¥Y T n i> 4.1
B L] Ej 1, k1 3 ) (413

one obtains the result

4 = e~ r‘ ’ r ’
T TR T 4,19
where the covariance Qj is obtained from (4.4). Substituting (4.14) into

(4.12) gives the expression

i-1
E[ ‘![ it j§0 Fi,j-i-l Tj"l'l erl.j (4. 15)

An extremely desirable property from the standpoint of filtering and
processing of measurement data is the recursive nature of the filtering
equations as, for example, in the Kalman filtering technique. Although
(4.15) characterizes the cress correlation E’ , it is not in the desired
recursive format. To obtain a recursive equation for El_v_v? » consider

expanding (4.15) as follows

' -

i-1
3 ¢
E1 % ® j§ Fipn, 1 Tin QG T, j - T Q0 (4.16)

Using the properties of the transition matrix, F i, and the fact that
’
F, = Ti+1AiPl it may be shown that (4.16) is of the form

——, — '
S ¥inl = T AP &Y - QT
where (4.17)

— ) & '
fiv = TQT,




Rcturning to the problem of designing an optimal obscerver for the
system (4.1), (4.2), we again assume without loss of generality that the

measurements are of the form

y =0 lolx +y, (4.18)
Thus, the same observer structure used previously in Chapter 3 will be
employed here. The observer output is therefore taken to be following

z = Kty )x + g (419
wherc again we seek the optimal gain matrix, K i‘ » to minimize the overall

mean square estimation error. Following closely the approach of Chapter 3,

we begin by partitioning the observer error covariance (4.8) as follows.

q 1

{ PRy (4.20)

i
Er1Si1 = Tin

i i
%1 I %2
where the partitions of the matrix {1 are conformable with the partitioned

matrix T, . In the present case, the matrix {1 is defined by (4.21) below.

. b L ’ ' ' '
GO AP EET PIA HAVRYV, A +Q
& —— a = e ' '
AP EW - W B'A (4.21)

The next step in the observer design is to obtain the overall
estimation error. From this point on the results are essentially identical
in form to the white noise case considered in Chapter 3. Omitting the

unnecessary details, we obtain the result

Sl




*‘
trace &, .1841 = trace Rl
(4.22)

i ’ { i ) {
+race (K @) 4R DK R 0 40, 0K 0+ Qg )

Comparison of (4.22) with (3.47) of the previous chapter leads to the
obvious conclusion that the optimal gain matrix is identical in form to that
obtained for the white noise case. Hence, the optimal gain matrix is given

by the expression
ke, = ol LeR gt (4.23
i = Tl Gy TR -23)

where in the case of a Gauss-Markov plant noise the computation of the
matrix ﬁl is modified to account for the cross correlation between the

observer error & and the plant noise, Wi

4.3  OBSERVER DBSIGN FOR SYSTEMS WITH GAUSS-MARKOV
MEASUREMENT NOISE

Next we shall consider the problem of sequential estimation of the
state vector x, of the plant (4.1), (4.2) using a minimal-order observer where
the measurements are corrupted by a colored noise of the Gauss-Markov
type. The plant noise, Wis Is taken to be a Gaussian white sequence with

covariance

Ei\_g‘\lj'] = Q) (4.24)

However, here we model the measurement noise, ¥;» as a Gauss-Markov

sequence generated as the output of the discrete system

Yir = Oy L
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_{i is a zero-mean Gaussian white sequence. The covariance matrix of the
measurement noise, Yier denoted as Rl +1° evolves with time according to

the reladon
'
Ripr = 8RS, + 587 (4.20)

We shall next optimize our canonical observer design based upon the system
model described above., From the basic observer error equation (4.7) and
the fact that F‘ = 'I‘l +1Alpl and Dl = 'I“ “Aivi it is easily shown that the
observer error covariance is of the form

T~ TEtp tp ¢ PR ’
Siisim = T AP S T RUA T AVIRVIA T Q) T,

+ T AR ES VA +AV VETRP AN T, (4.27)

Noting that the observer error covariance (4.27) is essentially in the same
form as (4.8), it is clear that the canonical observer structure used
previously may be again utilized for the problem of colored measurement
noise. Before proceeding with the observer design it will be necessary to
obtain a recursive solution to the cross-covariance S‘ _" needed in the
evaluation of the observer error covariance (4.27). From the basic observer
error equation (4.7) and the properties of the noises v and Y {namely (4.29)
and (4.25) ] one obtains the result

i-1
T —-—
_‘!‘ = j§ Fi' j+l Dj !j!‘ i‘z. 3, vee (4.28)

Since the observer is initialized as in (4.10) we have that

£y, =0 (4.29)




From the solution of (4.25) which is

1
My b 8 ke 5 > (4.30)

at! @
= [ Gk and 6 = | for all “i" we obtain the result

where 4
s S

= ‘e 'wuBRS '
T A (4.3
and the covariance R‘j is obtained from (4.26). Substituting (4.31) into (4. 28)

gives the result

i1
-— ' '
5 j=21 Fis, j+1 DRi8qa,;  + DR, (4.33

Next using the properties of the transition matrix Fl j and the relationships
’

F AlP‘ and D T, 1AV, it may be shown that (4.33) is equivalent to

l+l i+
the recursive expression

b e ?
S = T AP Y HAVR) 6,
where (4.39)
. &
£y, =0

Without loss of generality we shall again assume the measurements to be of
the form (4.18) and take the observer transformation to be of the form (4.19).
As before, the observer design is optimized by obtaining the free gain

matrix K‘ +1 which provides minimum overall mean square estimation error.
The matrix fi, defined below, is partitioned as described previously

[see (4.20)].
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(4.395)
vl ’ ¢ —— ¢ ¢
AR SN VA PAY, N8 RA
P—— ¢
where €101 = Tipd & Tiga
Using (3.38), (3.44) the total estimation error covariance is found

to be r 1

l
1 Ya&Sa Rk’

‘=

Ei+1€141
. Ry
LA

P} I

; Se%m Kin

Sinvinl K Rin - —
i+ Y+15541

lR

111K 1+1 J
(4.36)

Before proceeding with the minimization of the mean square
estimation error we shall rewrite the quantity €, v, ’ in a more useful

form. We partition (4.34) into the following form

i
n
b TR
Satin TN | T (4.37)
where mn ll is the upper m x m dimensional partition and 322‘ is the lower
(n-m)xm dimensional partition. With this definition it can be shown that the

mean square estimation error is given by




SERS————_
Ace S840 " oo Ry

£ .1 &
+erace [k (9= my e VH R )R (4.38)

i .. 1 oo ¢ i
Ky (gl m55) + (g - mpy )K" + %y |
Setting the gradient of (4.38) with respect to the gain matrix Ki +1 €qual to
zero gives the result
) S i, faasiy
Kipa (Ogp =y Ry ) + (7,1 myyt) =0 (4.39)
The minimizing solution is given by the following expression [1,12,24]

BT S T R +
Kip® = =%y =g )0y myy oy +Ry) (4.40)

where ( )+ is the Moore-Penrose pseudoinverse.




SECTION V

EXAMPLBS ILLUSTRATING THE THEORY

5.1 INTRODUCTION

In this chapter we shall illustrate the application and utility of the
obseyver design techniques developed in the preceeding chapters 3 and 4 of
the dissertation, Toward this end we shall consider an important practical
problem, namely the design of a radar tracking system (sometimes
referred to as a track-while-scan radar system) based upon the previously
developed theory of optimal minimal-order observers. In particular we
treat two special cases and these are presented in the following sections of
this chapter as examples 1 and 2. The purpose of these examples is to
demonstrate in a clear and straightforward manner the usefulness of optimal
minimal-order observer theory to an actual and realistic design problem. In
the interest of simplicity we have selected target models for our examples
which are sufficiently simple so that the resulting observer design equations
are not too unwieldy and cumbersome. However, the target models will be
sophisticated enough so that the results of this design study are realistic and
provide useful design information in a real tracking situation,

In the first example we consider tracking targets having white noise
acceleration inputs, that is, the target maneuver is a white noise sequence.
The maneuver, therefore, at one sampling period is completely uncorrelated
with the maneuver at a different sampling period. This situation prevails
when the target exhibits constant velocity except for random disturbances.

Also, the measurement errors are assumed to be independent from measure-

ment to measurement. Typically, ballistic missiles, orbital and suborbital




targets are modeled in this way. Example 1 is intended to demonstrate the
basic optimal minimal-order observer design for systems having white noise
distrubances as treated in Chapter 3.

In the sequel we shall, of course, compare the resulting performance
of the best minimal-order observer tracking system with the performance
obtained from the corresponding theoretically optimal Kalman filter tracking
system. Also, in our comparative study we shall investigate the constant
eigenvalue observer designs of Dellon (10] and Williams [32] anc we shall
compare the performance of these designs with the best minimal-order

E observer design.

‘ In the second example we treat a slightly more sophisticated (and
perhaps more realistic) target model, namely the case where target
acceleration is characterized as a time-wise correlated noise sequence.
Physically speaking, this is interpreted as the situation where if the target
being tracked is accelerating (maneuvering) at time instant “i" then it is
also likely to be accelerating (maneuvering) at the next observation time
instant "i+1." Typically, manned maneuvering targets such as aircraft,

ships and submarines are generally modeled in this way [27]. The

maneuver properties of a particular target are characterized, therefore, by
two parameters, and these parameters are the target maneuver variance and
correlation time or time constant. In the second example we shall treat the
maneuver variance as constant and shali vary the maneuver correlation time
in parametric fashion. Hence the resulting tracking accuracy of the best
minimal-order observer tracker and the Kalman tracker is, for the most
part, presented graphically. In this way a large class of manned
maneuvering targets is considered and the performance of the tracking system




for any single particular target is obtained from the graphs by specifying its

particular maneuver properties. The purpose of example 2 is to demonstrate
the application of our optimal minimal-order observer design technique for
the case of systems with time-wise correlated noise inputs as discussed in

Chapter 4 of the dissertation.

5.2 EBXAMPLE1

To illustrate the application of minimal order-observer theory
in a practical design situation we shall consider the following standard radar
~ tracking problem. For purposes of simplicity we shall treat only the special
case of a single spatial dimension. In particular, the target motion is
confined to motion along the x-axis of the usual cartesian coordinate axes and
the radar is assumed to provide range measurements along this same x-axis.
Mathematically the target equations of motion for this simplified one-
dimensional radar tracking situation are given in state variable representation

by the following (28 J;

2
Xi) 1 T 511 % 0
x|l =0 v TIx| + o] w (5.1)
Xi41 0 0 1 X, 1

| b
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y‘=[l 0 0] X +V‘ (5.2

b et T

As indicated in (5.2), the position of the target along the x-axis is
measured by the ground radar. The measurements contain observation noise

which is represented by an additive zero-mean Gaussian white sequence, Ve

having variance °v2 (measurement noise variance). Practically speaking, the
radar measurement error would be range dependent, However, in this
simplified example we shall take the variance, ovz, to be constant. In (5.1),
the input W; represeats the change in target acceleration from time "i" to
time "i+l" and for purposes of this example W is assumed to be a zero-mean
Gaussian white sequence with variance omz (maneuver variance). The data
rate, T, is assumed to be constant so that target position is observed every
T seconds.

One additional comment concerning the observability properties of
this system is appropriate at this time. It is clear that the system (5.1),
(5.2) (defined by the pair of matrices (A, h)) is observable in the sense of
Kalman [16]. Checking the rank of the observability matrix we obtain the
result

h 1 0 0

Det|na | = Dee|1 T T2/2 T

2

5.3)

1 2T IT




Hence the system defined by (A, h) is observable in the usual sense for all

data rates T >0,

Kalman's filter for the system (5.1), (5.2) is a 3-state filter

defined by the following equations:

/i " F R G ™ B 20 (5.9
where Kalman's gain matrix is
] ’ -1
Kiel * Pz B Mg P B R4 (5.5)
and
X1 A X (5.6)

The n-vector Xi41/141 is the minimum mean square estimate of X4 Siven
measurements up-to and inciuding time "i+1" (i.e., the filtered estimate)
and _g‘ﬂ/‘ is the minimum mean square estimate of X4 8iven measure-
ments up-to and including time "i" ({.e., the one-step-ahead prediction).
The nxn matrices P‘ +1/i+1 and P‘ +1/1 ore the covariance matrices of the
filtered and one-step-ahead prediction errors, respectively, These matrices
satisfy the following recursive equations,

Pn = A Py A+ Q

(5.7
Pivrzier = (o Kipn B Piga g

Design of Kalman's optimal linear filter is essentlally complete at this point.
The structure of the filter is given in equations (5.4) through (5.6) and
initialization of the filter is performed in accordance with (5.7).

6l




Finally, following the approach taken by Singer and Monzingo (28],

we shall initialize the Kalman filter equations by taking as the initial state

estimate
;‘o/o =Y
’.:o/o 3§ 'lf' (g Yo~ 2y-l i % y-2) (5.8)
o 1

o/o - ;2 (yo A 2y-l +y_2)

where Y. Yo and ¥, are, respectively, the first, second and third radar
measurements received. The corresponding covariance initialization

equation for (5.8) is given by the following:

L@ ke ABte Oy

v | 2 U | }T
R

3 ovz ' 13 °v2 Tzom2 | Govz otznT

LR U e SRR e e CaR e Sl .9
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Since Kalman's linear filter provides the best attainable
performance in terms of minimizing the mean-square estimation error, it
will provide us with a useful upper bound to tracking filter performance.
Hence, our purpose in presenting the Kalman filter here is to provide a
reference against which the performance of our minimal-order observer may
be compared. We shall next present the design equations for the

minimal-order observer.
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Design of the optimal mintmal-order observer for the system
described by (A, h) is relatively straightforward and involves evaluating the
design equations derived in Chapter 3. We note at this point that the state
equations for the system considered in this example are already in the
desired observer canonical form (that is, transformation of the state equations
to a new coordinate system {s unnecessary, and therefore the basic design
equations of Chapter 3 apply without modification. For convenience we
tabulate the appropriate design equations below.

T, = [Kllln_m] (5.10)
P-[ 9 ] v-[%‘] (5.11)
i g% i ﬂq
i -1
Kn1‘*éﬁ%1*“ﬁﬂ (5.12)
Fo=ab ¢k, Al 5.13)
(= Aty A 5.
D =Ab -ab Kk 4k (@Al -aAl k) (5.14)
i = A1 T A K tK (A - A K, .

We shall present next the solution to the minimal-order
observer equations given above. Since the system defined by (A, h) has n=3
state variables and m=1 output measurement, the dimension of the minimal-
order observer is n-m=2 and therefore the observer transformation, T‘,

satisfies the relationship

EeTix+8

where

. i




k) bt
Tl = | (5.15)
|
kfz) O 1
K I

Hence, T, is a 2 x 3 rectangular matrix containing the arbitrary gain
elements kl(l) and kl(z). These arbitrary gain elements are adjusted in an
adaptive manner to minimize the overall mean-square estimation error at
each time instant "i." Computation of the corresponding Pl and Vt matrices

results in the following:

0 o 1
p=|l 1 o A B (5.16)
¢ 4 -k

The estimate of the state vector X is, of course, given by the following
X =Pz +V, Y (5.17)

with Pl and V jas defined in (5.16). Next, the observer transition matrix,

F {» Is found to be for this example

2
1 T
i T kH-(l . [T 2 ]
F, = + 4 (5.18)
0 ’ Kig1

l S—— S —
A2 K1 Al
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E gl e K Ly al ¢
Ay Ay i i+ 11 A i
(5.19

Since the three defining matrices (Tl’ Fl’ D‘ ) have been specified uniquely in
terms of the unknown adaptive gain elements kl(l) and k1(2) (see equations
(5.15), (5.18) and (5.19)], design of the basic observer structure is
essentlally complete. It remains only to specify the computation of the
optimal gain matrix K‘ (that is, the optimal gain elements kl( 1 and 1(2))
and to describe the observer initialization technique.
Determination of the optimal observer gain matrix, K

1410 18 8
recursive procedure which uses the covariance matrix

’ ¢ ’ ¢ ‘
ﬂl = Ail" O & A “‘1,"1"1"1 A +Q1. For the system defined by
the state equations (5.1), (5.2) the matrix Ql is found to be

T T%2 T 1 0
- Tl
s oty Pl |,
& ™8 T 1
“
APy P A’ (5.20)
B e~ (D2
2
+ kM- Ay of |-k - Lo, D A, -«
@
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The gain matrix K i+ is obtained from the relation Kin

i i =3 i i
=-0, @, +R )~ where Q,, and Q| are the appropriate partitions of

the covariance q and Rl +1 is the measurement noise covariance at time "i+l,"

Let the observer error covariance be the following

Finally, the optimal gain elements, kl ﬂ(l) and kl “(2) » can be written in

closed form as follows

i
w
e e 2 (5.23)
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Initialization of the observer requires the evaluation of the covariance

A '
matrix (‘o - AoMvo + Qo where for this example, since M - Po /o’ we

obtain the result;
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Finally, the optimal initializing gain elements, klu) and kl(z), are found to

be:

5.3 PERFORMANCE EVALUATION, EXAMPLE 1

We shall present next the results of a comparative study of several
tracking system designs for tracking targets as modeled in example 1. Among
those tracking filters evaluated are included the Kalman filter, the optimal
minimal-order observer, the optimal steady-state minimal order observer,
and the constant eigenvalue observer designs of Dellon [10] and Williams [32].

A comparison of the tracking accuracy for these several tracking systems




is presented graphically in figures 5.1 through 5.7. Before discussing these

computer results, the following descriptive comments are necessary:

1. The optimal steady-state minimal-order observer is identical in

structure to the optimal (time-varying) minimal-order observer design
developed in this dissertation, with the exception that the observer gain
matrix is constant and equal to the steady-state gain matrix, lim Kl‘ E
obtained from the minimal-order observer algorithms. s

2, Dellon's constant eigenvalue observer design is also identical in
structure to the optimal minimal-order observer.* However, in this design
the observer gain matrix is chosen to yield a fixed time-invariant observer
with two constant and equal eigenvalues, Hence, to design a Dellon-type
observer for this example it is necessary to determine the observer gain

matrix, K, such that the observer F matrix, where F = A22 +KA has the

12°
characteristic equation P() = (A- %)2 and A ls the desired observer eigen-
value. This observer is therefore completely specified by its eigenvalue, Ay

The solution is easily shown to be the following.

1T D71 123
F= + (5.28)
TR k(2
Y K A2

with

*Dellon's work is discussed in Section 2.1, Chapter 2.
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3. Williams' constant eigenvalue observer design is identical in

structure to a Kalman filter except instead of implementing Kalman's

gain matrix the observer gain matrix is chosen to yield an observer with
three constant and equal eigenvalues.* To design a Williams-type observer
for this example it is necessary to determine the triple of matrices (T, F, D)
satisfying the fundamental observer equation TA = FT + DHA such that the
ubserver F matrix has the characteristic equation P(A) = (A- )b)s and % is
the desired observer eigenvalue. Hence, the Williams' observer is also

completely specified by its eigenvalue, A,+ For the system (A, H) of
example 1 the solution is found to be the following.

o - S
2
el B 3
LA03 0 o
(5.29)
3-3),
D= 3502-3

Ll’Xba

*Williams' work is discussed in Section 2.2, Chapter 2.
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Having described each of the observer designs considered in this
comparative study we are now ready to discuss the computer results
presented graphically in Figures 5.1 through 5.7. In this study, the following

typical radar and target model parameters were used:
1. Radar range measurement accuracy, O = 10 (ft.)
2.  Target m_aneuver variance, 0 m2 = 100 (ft./sec:.z)2
3. Data Rate, T = 1 second

Presented in Figures 5.1 and 5.2 is the total mean-square estimation
error versus the discrete time index "i" (that is, the trace {()_(‘-gi) .
Q‘i-gi) '} versus time "i"). Figure 5.1 demonstrates the results
Dellon's design for observing eigenvalues of A= .3, .4, .45 and .5 and also
demonstrates the results of the Kalman filter, the optimal observer* and
the optimal steady-state observer, With reference to Figure 5.1, it is clear
that the overall steady-state estimation error of the optimal observer is
increased from that of the Kalman filter by approximately 5.9% whereas for

the best possible equal eigenvalue design (A, = .45) the corresponding

*For the sake of brevity we shall refer to the “optimal minimal-order
observer" as the "optimal observer."
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degredation is on the order of 16,5%. Therefore it is concluded that the
steady-state performance of the optimal observer is superior, by far, to the
vest equal eigenvalue observer design. Inspection of the transient behavior
also shows this same gceneral trend to be true, as seen in Figure S.1.

(Note also, in this example, that the optimal steady-state observer provides
excellent tracking performance, not only in the steady-state but during the
transient period as well).

Another interesting comment can be made concerning the results of
Figure 5.1. In viewing the results of Figure 5.1 it is seen that the best
steady state performance is achieved with A = .45, however during the
transient period the design with A= o4 performs best indicating that to obtair
acceptable tracking performance (during both the transient period and in the
steady-state) based on selection of observer eigenvalues it is perhaps
necessary to select the eigeanvalue in an adaptive manner. This idea was first
proposed by Bona [ 7 ] where it was suggested that the response time could be
decreased by using one eigenvalue during the transient period and after a
given time the eigenvalue could be increased to improve steady-state estima-
tion accuracy.

Similar comments can be made about the performance of the
Williams®' 3-state observer design as seen from Figure 5.2. To achieve the
best steady-state tracking performance in this case, one takes the observer
eigenvalue to be Ac .35. However, it is seen in Figure 5.2 that A = .3
provides much better tracking accuracy during the transient period. In
res;ards to steady-state tracking performance it is seen that for the best
eigenvalue (% = ,35) the overall mean-square error is increased by

approximately 10.7% from that of the Kalman filter.
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Figures 5.3 through 5.7 provide a breakdown of the overall mean-

u Sfuarc estimation error into target position, velocity and acceleration errors.

Figurce 5.3 shows the mean-square crror in the position estimate versus

discrete time "i" for each of the observer designs being evaluated. Since
Williams' observer is a 3-state filter, it provides some improvement in the
estimate of target position whereas the minimal-order observer designs
(including the optimal observer, the optimal steady-state observer and
Dellon's equal eigenvalue observer) do not improve the accuracy in target
position, This is no great loss however, since even the Kalman filter only
improves the accuracy in target position from its initial value of 10 feet
r.m.s. to approximately 9 feet r.m.s. in the steady state. From the stand-
point of good tracking system design this slight improvement in position
accuracy is hardly worth the effort. Reduction in the size of the tracking
filter from 3 states to 2 states will result in significantly reduced computer
processing requirements while yielding only a slight loss in position
accuracy.

Figures 5.4 and 5.5 present the corresponding mean-square error in
the estimate of target velocity. From these curves one obtains the relative
degredation in the velocity estimate (ft./sec.) from that of the Kalman filter
 be, in the steady-state, 3.3% for the optimal observer, 6.2% for the
Williams observer with Ao = .35 and 11.2% for the Dellon observer with
)b = .45. Similar comments can be made concerning the mean-square

errors in the estimate of target acceleration shown in Figures 5.6 and 5.7,
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5.4 EXAMPLE 2

We shall next consider the important problem of radar tracking of
manned maneuvering targets as recently studied by Singer [27]. In this
¢xample the target acceleration is modeled appropriately as a time-wise
correlated noise sequence of the Gauss-Markov type. The fundamental state
equations describing the system in one dimension are again given by (5.1),
(5.2). All the basic definitions and assumptions of example 1 are therefore
assumed to hold with the exception that in example 2 the state driving noise,
W;, is taken to be a scalar Gauss-Markov sequence. Hence, W, is obtained

as the output of the discrete-time linear system

i+l i

where 3! is a zero-mean scalar white sequence with variance oMz(l-pz) and

P is the correlation between successive maneuver samples. Since w; in (5.30)
is a non-white sequence, the Kalman filter equations cannot be directly
applied and it is necessary to "whiten" the input noise before the Kalman
equations can be used. The usual solution to the "whitening" approach is to
augment the state equations (5.1), (5.2) using the relation (5.30).

When this is done we obtain the following "augmented" state equations.

2
5 r T B - -~
wal 1T Floffx] [o
X 0T T TO 0
Hila = n (5.31)
R ¢ ¢ 12 lf% 0
i) oo o]ef{w] | L]
@ _ A(a) (@, (a)
EathTRYY
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+vy (5.32)

=00 0| o]

—

7 =1O0® +y,

It is clear that Kalman's filter for the above augmented
system is a 4-dimensional filter and to obtain the solution for Kalman's

optimal weighting matrix it is necessary to solve recursively the augmented

Kalman algorithms
) = AE ¢ 0 - R A 20D
Kfii . Pg-)lll Hg-{ ' (Hfi)l P g-)l/l Hg-)l "+Ry) y (5.33)
P = A R A +of?

(5.39)

P g-)l/iﬂ = - Kfii Hg-)l) P g-)l/l

The superscript "(a)" implies the augmented system as defined in (5.31),
(5.32). In the defining equations for the augmented Kalman filter the co-

variance matrix for the augmented error vector is

A E ¢
P }:-)I/H-l " B[(’:‘i(:)l/m ; 5&3’@3/&1 5 —m) } (5.39)




b —

Using the approach of Singer and Monzingo [28] we initialize the
augmented Kalman filter equations by taking as the initial state estimate
for the augmented state the following:

xo/o =Y

s 1 /3 1
X0/0 =T ('2 Yo~ ., *3 Y—z\
(5.36)

~

A 1
xo/o=;2 0o - 2y ty.

w°/°=0

where again Yo Vo and Y, are the first, second and third radar measure-
ments received. The corresponding covariance initialization matrix for the

augmented filter is

2 2
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The two equations in (5.34) constitute the Ricatti equations that must
he solved at each discrete time instant to obtain the Kalman weighting matrix,
Kg_i . For this simple example the Kalman filter computations are increased
significantly due to the addition of the extra state variable introduced by way
of the augmenting procedure. For example, Williams [32] has shown that the

number of multiplications or additions required to solve the Kalman equations

is given by the result

N = 3n3 + 2mn2 + 2m2n + 2m3 + n2 + 2mn (5.38)

where x, is an n-vector and Y is an m-vector. Whereas the non-augmented
system (5.1), (5.2) originally required a total of N = 122 multiplications or
additions (since n=3, m=1), the augmented system defined in (5.31), (5.32)
requires N=258 multiplications or additions (since n=4, m=1). Clearly the
Kalman filter computational requirements have been significantly increased
due to the mere addition of a single state variable.

Design of the minimal-order observer for this example uses
dircctly the "non-augmented” state equations (5.1), (5.2) together with the
rclation (5.30). The design procedure is described in detail in Chapter 4.
Since the state equations (5.1), (5.2) are already in the desired observer
canonical form, the basic observer structure for this example is identical
with that obtained in the previous example 1. [See equations (5.10) through
(5.14). 7 However, computation of the observer gain matrix, K, ,
is modified appropriately to account for the non-zero cross-correlation
term %W ‘. Thatls, the optimal gain, K, ,, is obtained recursively

using the covariance matrix.
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where the cross-covariance e:iwi is computed recursively as _61 +1%+1
= Tiy (AR EF_" - Q)T ‘. We shall omit the unnecessary details since the
solution of the gain matrix K i+1 is quite similar to that obtained previously
in example 1. Using the notation of the previous example we obtain the

optimal gain elements, “831 and kg_)l » in closed form as follows.

i

1 Wio
e 65
W), *+o,
.
2 _ 13
= Sl o & b
Wy, +o,
where
toq2e farde by Gt -4
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(5.41)
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In obtaining the above results we have used the notation

i i
€
o | e

= vt i i
i "WZI sz

Gk 5edX
l 3
.E{ .o

(5.42)

where for this example only the elements ew 131 and e:wz3i are non-zero and

propagate according to the relations

2 : .
i+l 1) i T 1 i i
Nl3 = p_[k( (Tewl +Tew23)+ WLS +Tew23]

i+l 3
: (5.43)
oo B _ ) e it 2
oy ["m (TWIS o e“’23) i ]

Initialization of the observer proceeds as follows. The initial observer
error covariance matrix is of the form € €, e TlnoTl' and it is easy to

show that for this example

-,'E) ’

X)W ' +w (5.44)

- YH ’
Wol, = %) 74, +Q,

where M_ = E {(x; - X )(x, - £ )’} and X is defined in (5.8). Evaluating M_

29 '
'.'zo = AoMvo + AOQ(O

yields the result

o2
v
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6'3v To -
e 3

2 (5.45)
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Also, the cross-covariance (x =% S\go' is found to be

{ 0 0 0
’ pzTomz -
XL 1= —o)!o = 0 0 3 (5.46)
0 0 —2—pom2 +po 2
m

Substituting (5.45) and (5.46) into (5.44) yields the initialization matrix Qo

Omitting the unnecessary details, the optimal initializing gain elements kl(l)

and k 1(2) are found to be

210v2 70 273

m
g 7.3
2, ‘mT 2
l9ov+—2——(1+p)+cv
(5.47)
l(mv2 o] 2
— + - (3 +5p +20)
)
1 P 2.1.1

2 m 2
1957+ H— (1+0) +0,

Finally, the elements e\vmi and NZ; given in (5.43) are initialized as

follows:
Tzo 2 2
RN R Y 3 3
Wiy’ = = ¢+ kMt 21 (024360
(5.48)
T2 2 3

’

“Wyg' = 7'—“—(pz+p3) k1(2)+om2 (p+oz+ %—)
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5.5 PERFORMANCE BEVALUATION, EXAMPLE 2

In this example we have assumed the radar range measurcments are
independent from sample to sample and the accuracy of the range data is
T ™ 10 ft. r.m.s. For the target model we have taken the target mancuver
variance to be om2 = 100 (ft./sec.z)2 and the maneuver time constant
(correlation) has been varied in parametric fashion. More specifically,
maneuver correlations of 0, .2, .4, .6 and .8 were evaluated in the study and
the tracking data rate, T, was assumed to be 1 second. In each case
considered, the tracking performance of the 4-state Kalman filter and the
2-statc minimal-order observer was evaluated. We shall next preseant the
computer results shown graphically in Figures 5.8 through 5.11,

The total mean-square estimation error versus discrete time "i" for
both the Kalman filter and observer is shown in Figure 5.8. Note in this
figure that we have plotted trace E [(xi = ii)(xi g Rl)'} versus "i" and there-
fore the Kalman filter curves do not contain the error contribution in
estimating the augmented state variable, W . Referring to Figure 5.8 it is
seen that the total steady-state mean-square estimation error for the observer
is increased from that of the Kalman filter by 5.9%, 5.17%, 5.0%, 6.6% and
16.5% for target maneuver correlations of 0, .2, .4, .6 and .8 respectively.
These results indicate that the overall tracking performance is dependent
upon ¢, the maneuver correlation, as is expected. From the viewpoint of
tracking system design, however, it is more meaningful to consider the
individual accuracies in target position and velocity estimates since these
two quantities are the critical design quantities. For this reason we have

shown in Figures 5.9 and 5.10, respectively, the mean square errors in

target position and velocity, From Figure 5.9 it is seen that Kalman filtering
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improves the initial measurement accuracy of 10 ft. r.m.s. to, at hest,
about 9 ft. r.m.s. in the steady statc. As stated previously in examplé |1,
this slight improvement in position accuracy is hardly worth the increase in
numerical and computational complexities associated with mechanizing the
4-state Kalman filter. The corresponding mean-square errors in target
velocity are shown in Figure 5.10. From these curves it is determined that
the steady-state accuracy loss in the velocity estimate (ft./sec.) incurred
in using the 2-state observer instead of the 4-state Kalman filter is
approximately 3.3%, 3.1%, 3.2%, 3.6% and 6.9% for maneuver correlations
of0, .2, .4, .6 and .8, respectively. For completeness, we have also
included, in Figure S.11, the corresponding mean-square error in the
estimate of target acceleration.

Table 1 shows the parametric behavior of the optimal observer gain
elements, ki(l) and ki(z), versus discrete time "i" for each of the maneuver
correlations considered. The purpose of including Table I in this example
is to point out the time-varying nature of the optimal observer solution which,
of course, is also a fundamental property of the Kalman filter. After an
initial transient period, the error covariance matrices settle down and remain
constant and likewise the corresponding optimal observer gain elements
remain constant, This same phenomenon occurs in Kalman filtering theory
for problems where the system matrices (A, H) are time-invariant and the
noise inputs are stationary stochastic sequences. In examining Table 1 it
is interesting to note that, generally speaking, the magnitude of the observer
gain increases as the correlation increases from ¢ =0 to ¢ = .8. Also,
from Table 1 it is seen that the observer settling time tends to increase as

the maneuver time constant increases. The settling time of the observer
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is comparable, however, with that of the Kalman filter, as can be seen 1
in Figures 5.8 through 5.11. ;4
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Figure 5.8 Total Mean-Square Estimation Brror vs. Time "i."

91

et




W1, 2wl °SA UONISOd Ul Jo11g axenbgueapy 6°c aanBi1g

6 8 /] 9 < 4 € z =1
(4]
O e o o o o o e e e e ————t———
. Il/
b DlEsg ¢ G 1llll.///
# Xlll Cong 06
l’l’”
]
o~
o
I DRWB) === ==
IAIISq()
Sé6
puod9s 1 = 1 awy meQg
JIqeITRA = ¢ UOIIR]I1I0)) IJANIUBH
N«N.uom\.zv 00T = NEo aoueITRA I2ANSUBH
‘JOT = As A>eandoy juswaanseapy aSuey
siojowieIed

i — | &

15A195G0 mNA_m-_ﬁx a




et o
” Parlm:uers SR~ U !
B {(il-x‘)z] Range Measurement Accuracy L 10 ft.
. Maneuver Variance om2 = 100 (ft./sec.z)2
Maneuver Correlation = variable
Data Rate T = 1 second
275 1 1 :
Observer
= == = Kalman Filter
250 \
\
\
N\ T~~~
\ \\ \ p, Correlation
rg——
o }
225 <\ 6
AN Y .8
P PR \:“\ 4
T
\Jh \P s - 16
‘ 3 e s o s
\ .
200 - x
\\‘ \- -
r---~b\\‘ \‘\--—-‘ L——-- '8
ﬂ-.-——-—— —-— eme e .2
0
\\
\
L-L-.
175
i=1 2 3 4 5 6 7 8

Figure 5.10 MecanSquare Brror in Velocity vs. Time "i,"

il e pr T e A

:
4
e — I




E {(stl-ﬁt)z}

§aramete'rs b, b ;
Range Measurement Accuracy o, = 10 ft,
4 Maneuver Variance o m2 = 100 (ft./sec.z)z.
\ Maneuver Correlation = variable
\ Data Rate T = 1 second
\
400 o -
\ Observer
\ b o s q-———J Kalman Filter
\
\
N\
\4 \ p, correlation
N
350 ———— .8
™\ .6
b
\\ §~§ o a=s a= b e -— e e of .6
‘ s \
\\ .4
——dr—— L D RS AR —p— .4
L N
300 —Ng 2
\-—-4'-—- ﬁr— e e .8
o --‘d—— — g emn G e e GEe @ e — e e oy :;
250
0
EES S Eme afne cmEn SwD e @ MRS o X X3 0
200 >
i=1 2 3 4 5 6 7 8

Figure 5.11 Mean-Square Error in Acceleration vs. Time "i."




puodas 1 = 1 ‘aey ®wieq

a|qelaeA = ¢ ‘UONE[21I0D IAANduel 19818
(2995/3) 001 = Yo ‘asuerxep xoanouep 10818
(*13) o1 = 40 ‘Aoeandoy Juswainsesa|y Iepey

‘syajouwieIRg
6T6S°0- 9906°0- 16€S°0- €£€868°0- 88L¥°0- T¥L8°0- I18T9#°0- 6L£8°0- €19€°0- 9TZ6L°0- 61
626S°0- 9906°0- 16€S°0- €£868°0- 88.%°0- TPL8°0- I8T%°0- 6.£8°0- €19€°0- 976L°0- 81
626€°0- 9906°0- 16€S°0- €£868°0- 88.%°0- TPL8°0- I8T%°0- 6.£8°0- €19€°0- 976L°0- LY
676S°0- 9906°0- 16€S°0- £868°0- 88.%°0- T¥L8°0- 1819°0- 6L£8°0- €19€°0- 9Z6L°0- 91
676S°0- 9906°0- 16€S°0- €868°0- 88.%°0- TH.L8°0- I8T#°0- 6L£8°0- €19€°0- 9Z6L°0- C1
626S°0- 9906°0- 16€S°0- €868°0- 88.9°0- T¥L8°0- 1819#°0- 6L£8°0- €19€°0- 9TZ6L°0- 141
6T6S°0- 9906°0- 16€S°0- €£€868°0- 88.%°0- T¥L8°0- I81%#°0- 6.L£8°0- €19€°0- 9Z6L°0- €1
626S°0- (906°0- 16£S°0- €868°0- 88.9°0- T¥.8°0- I8T#°0- 6L€8°0- €19€°0- 9T6L°0- FA |
T1€6€°0- 8906°0- C6€S°0- €£868°0- 88.%°0- T¥.8°0- I8T%°0- 6L£8°0- €19€°0- 9Z6L°0- 14
0€6S°0- L906°0- C6€S°0- £868°0- 88.%°0- T¥.8°0- 181%°0- 6.£8°0- Z19€°0- 9Z6L°0- (1) § o
€Z6S°0- L906°0- 06€S°0- €868°0- L8LP°0- T¥L8°0- I81#°0- 6.£8°0- €19€°0- 9T6L°0- 6 o
+€6S°0- T806°0- C6€S°0- 8868°0- 88L¥°0- ¥¥.8°0- Z819°0- 08€8°0- €19€°0- 09zZ6L°0- 8
cS6S°0- T606°0- 66£S°0- €668°0- 06L%°0- S$L8°0- 18T9°0- 8L£8°0- 119€°0- €T6L°0- L
CI6S°0- $8906°0- 98€C°0- (£868°0- €8.9°0- 1¥9.8°0- 9LTP°0- LLES°O- 019¢€°0- 976L°0- 9
9/8S°0- O0€16°0- LLES°0- LTO6°0- ¥8L¥°0- 69.8°0- S8T¥°0- 86£8°0- TT9€°0- T1¥6L°0- S
$8090°0- 86£6°0- 88%S°0- 69716°0- CPp8P°0- <£88°0- $12¥°0- OT¥8°0- L79¢€°0- 9Z6L°0- 4
6629°0- (LT1S6°0- 62€S°0- TL16°0- ¥08%°0- ¥€£.8°0- 9%T#°0- S9€8°0- 69S€°0- <SzT6L°0- €
169€°0- 68¢€6°0- €60S°0- TLI6°0- TLSP°0- $C68°0- LTTP°0- 6£L8°0- 6SLE°0- 67S8°0- <
€L.6°0- TO080°T- CT0G°0- 69.L0°T- €LPS°0- LELO°T- 0S¢S°0- ¥%0LO0°T- ¥¥2S°0- T1L90°T- T
1 1 1 1 1 1 1 1 ! 1
@7 " " m? 1 ™ @' o @ m?
g = 9= Fo=c 7= 0=z

W', SNSIOA ‘Y PUE Y SUTED T9AIISA0  °T°C AAEL




L L i

SUMMARY AND SUGGESTIONS FOR FURTHER WORK

6.1 SUMMARY AND CONCLUSIONS

This dissertation has considered the problem of estimating the state
of a linear time-varying discrete system using an observer of minimum
dynamic order. In Chapter 3 of the dissertation we consider systems for
which the plant noise v and measurement noise Yy, are modeled as
Gaussian white sequences. The effects of these noise disturbances upon the
estimation error are considered as an integral part of the fundamental
development. The solution of the observer design uses a special linear
transformation which transforms the given state equations into an equivalent
state space which is extremely convenient from the standpoint of observer
design. Design of the observer is then based on a special observer config-
uration containing a free gain matrix, Kl' which is chosen to minimize the
mean-square estimation error at time "i." The solution obtained is optimal
at cach instant "i" and therefore is optimal both during the transient period
and in the steady state. Computation of this gain matrix is done
recursiveiy as in the Kalman filter algorithms, however, computationally the
solution is much simpler than for the Kalman filter. In the special case of
no measurement noise, the observer estimation errors are identical with
that of the corresponding Kalman filter. The main contribution of Chapter 3
is, therefore, the development of a completely unified theory for the design
of optimal minimal-order observers applicable to both time-varying and time-
invariant discrete systems for which the plant noise W, and measurement

noisc v, are modeled as Gaussian white sequences.




In Chapter 4 we have extended the basic optimal minimal-order
observer theory to cover that class of systems for which the noise
disturhances w,, Y, are time-wise correlated and are modeled adequately as
Gauss-Markov processes. The usual approach to this estimation problem
is to augment the state vector and design the estimator (be it a Kalman filter,
obserycr, etc.) to provide estimates of the total augmented state. In
Chapter 4 we have utilized the basic observer structure developed in Chapter 3
and have modified the observer gain matrix appropriately to obtain minimum
mean-square estimates of the plant states without an increase in the
dimension of the observer (i.e., the observer dimensiou remaine "n-m").
Along similar lines, we have also considered the special case whereby the
plant noises w; and v, are white sequences which are crosscorrelated at
time "i" (that is, E {!i!j ‘}= Sidij) and have modified the observer gain
matrix appropriately to provide optimal performance in the mean-square
sense,

To illustrate the typical application of the observer designs developed
in this dissertation we have considered, in Chapter S, the design of a radar
tracking system. In the first example we treat the situation where the noises
v, and Yy, are white sequences. In this example, the performance of the
optimal minimal-order observer is compared with that of other estimators
including the Kalman filter and also several equal-eigenvalue observer
designs. It is shown that for a typical set of radar and target model para-
meters the optimal observer provides extemely good tracking performance and
is superior by far to the equﬂ eigenvalue designs of Dellon [10] and
Williams ([32]. In example 2 we treat the situation where the target

acceleration is modeled as a time-wise correlated noise sequence. Here the
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2-dimensional optimal observer is compared with the corresponding 4-state
Kalman filter and it is shown that the observer provides acceptable tracking
performance over a wide spectrum of target maneuver time constants. The
cxamples of Chapter S clearly illustrate the practicality of the observer
design techniques developed in the dissertation.

6.2 TOPICS FOR FUTURE INVESTIGATION

During the course of performing this research several closely
associated unsolved problems of an extremely fundamental nature have been
uncovered and these problems might form the basis for further research. In
this dissertation we have considered only observers of minimal dynamic
order. That is, the dimension of the dynamical portion of the estimator is
"n-m" where "n" is the dimension of the state vector to be estimated and "m"
is the number of independent available outputs. Since it has been demonstrated
qQuite vividly that the Kalman filter is an observer of dimension "n" and since
the Kalman filter provides the best performance in terms of minimizing the
mean-square estimation error, the idea of considering non- minimal order
observers is appealing. (A non-minimal order observer has dynamic order
greater than the minimal order observer but less than the Kalman filter.)

It is conjectured that through the use of non-minimal order observers
the estimation error can be reduced even further from that attained with
the optimal minimal-order observer developed in this dissertation. However,
the improvement in estimation accuracy is undoubtedly accomplished only at
the cost of increased complexity. This non-minimal order observer would
have important application in the class of systems where some of the outputs
are relatively noise-free while the remaining outputs are rather nolsy and




must be filtered. In this proposed domain of research the literature is
completely lacking and therefore it is recommended that further work be done
along these lines.

Another area of research which appears to be relatively void of
investigation is in the area of super low-order observers. When an estimate
of some fixed linear combination of states is required, it is well known (21]
that such an estimate can be obtained using an observer of order less than
the minimal order, "n-m." A consideration of the effects of system noise
tnputs upon the performance of these so called super low-order observers
may lead to an optimal design similar to the optimal minimal-order observer
developed in this dissertation.

Another possible topic for future research of a more practical nature
is the design of observers via the selection of observer eigenvalues. To
date, most of the literature pertaining to the design and optimization of
observer systems has been concerned with the ability to specify, with
complete freedom, the choice of observer eigenvalues. In fact, numerous
researchers have been able to demonstrate through the clever use of special
canonical forms that it is possible to design observers with completely
arbitrary eigenvalues provided the plant equations satisfy the observability
criterion. However, it is clear that without a thorough analysis of the
effects of noise the question of where to optimally place the observer eigen-
values for reasonable performance is still unanswered and remains a per-
plexing problem to the systems designer. It is one thing to be able to design
observer systems with complete freedom in the choice of observer eigen-
values, but it is another to be able to specify what the eigenvalues should be.

Very little has been written about this latter aspect,
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In the design of an observer for any given fixed plant, one possible

approach to this eigenvalue selection problem might be to first investigate
the eigenvalues of the corresponding K alman filter in order to establish some
guidelines for selecting the observer eigenvalues. In restricting the class of
admissible observers to be investigated, some fundamental rules might be
developed for the optimal choice of observer eigenvalues. Results of a
fundamental nature are also lacking in the domain of adaptive observer design
wherein the choice of observer eigenvalues is modified with time in an
optimal fashion according to the noise statistics, signal to noise ratio, or
some other criterion. Much research remains to be done in the domain of
observer eigenvalue selection where the minimization of noise effects upon
system pcerformance is of prime importance.

Finally, it should be mentioned that the design of the optimal minimal-
order observer for time-varying continuous-time systems is still an unsolved
problem. This problem was investigated by Ash [4,5] who considered the
design of a minimal-order observer for continuous time-varying linear
systems (i.e., the continuous-time analog of the discrete-time problem
treated in this dissertation) with the goal of obtaining an observer design
which minimized the effects of noise upon the estimation accuracy of the
obscrver derived estimates. Ash proposed a suboptimal trial-and-error-type
solution to the problem and hence the results of his work are an "engineering"
rather than a "mathematical” solution to the design problem. He was unable to
select the free gain matrix K(t) (analogous to the free gain matrix K j of the
discrete observer) to absolutely minimize the overall-mean-square
estimation error. It is conjectured that an optimal-observer gain matrix,

K*(t), does exist for the continuous time-varying minimal-order observer




and the solution of this problem would be an important contribution to the
theory.

One possible approach to the solution of this problem might be to
discretize the continuous time-varying state equations obtaining a model for
the plant which is valid at discrete intervals At seconds apart. Then the
theory developed in this dissertation for discrete-time systems may be
applied to the discrete representation of the plant and the optimal discrete
minimal-order observer derived. Taking the sample interval At sufficiently
small one would obtain a reasonably good approximation to the continuous
time problem. Of course, it is of interest to obtain a closed form solution
for the optimal observer gain K*(t) analogous to the gain Kl‘ of the discrete
time observer. In [15] Kalman was able to obtain the continuous-time
Kalman filter solution from a consideration of the discretized model by
taking the limit as At = 0. But even Kalman himself questioned the rigor of
this approach and in [18] Kalman took a more rigorous approach and solved
the Wiener-Hopf equation directly to obtain the continuous time version of
the Kalman filter. It is recommended that further work be done in the area of
minimal-order observer design for continuous-time equations with the goal of

determining the optimal time-varying solution.




3.

10.

i1,

BIBLIOGRAPHY

Aoki, Masanao. Optimization of stochastic systems. New York,
New York, Academic Press, 1967.

Aoki, M. "Control of large-scale dynamic systems by aggregation."
IEBE Traans. Automatic Control, AC-13, No. 3, June, 1968,

w' !Ia-iszt
Aoki, M. and J. R. Huddle. "Estimation of the state vector of a

linear stochastic system with a constrained estimator.” IEEE Trans.
Automatic Control, AC-12, August, 1967, pp. 432-434.

Ash, R. H. and 1. Lee. "State estimation in linear systems ~ a

unified theory of minimum order observers." 1970 Proceedings of the

Third International Conference on System Sciences, January, .
onolulu, Hawali, pp. 107-110.

Ash, Raymond Houston. State estimation in linear systems — a unified
theory of minimum order observers. Ph.D. in Eﬁneering.

Rensselaer Polytechnic Institute, Troy, New York, 1969.

Athans, M. "The matrix minimum principle." Information and
Control, 11, 1968, pp. 592-606.

Bona, B. E. "Observer theory and hybrid inertial systems." Paper
presented at the National Aerospace Electronics Conference,

May 19-21, 1969, Dayton, Ohio.

Bongiorno, J. J. and D. C. Youla. "On observers in multivariable
control systems." Polytechnic Institute of Brooklyn, Electrophysics
Memo PIBMRI-1383-87, October 12, 1967.

Chen, R. T. N. "On the construction of state observers in multi-
variable systems." Proceedings National Electronics Conference,
Vol. XXV, Chicago, minols, %emﬁr 8, 9, 1'6, 1959.

Dellon, Franklin. imal control of unstable linear plants with
inaccessible states. gﬁ.ﬁ. in Bngineering, New Yord University,
New York, 1968.

Dellon, F. and P. B. Sarachik., "Optimal control of unstable linear
plants with inaccessible states.” IBEE Trans, Automatic Control,
AC-13, No. S, October, 1968, pp. 491-495.

102




T T e

i

12,

13.

14,

lsl

16.

17,

18.

19,

21,

22.

23.

24.

Greville, T. N. . "The pscudoinverse of a rectangular or singular
matrix and its application o the solutivn of systems of lincar
cquations.” SIAM Revicw, Vol. 1, No. 1, January, 1959, pp. 38-43,

Huddle, James Richard. Sub-optimal control of lincar discrete-time
stochastic systems using memory elements. Ph.D. In Engineering,
University o‘ Californla, Los Angeles, 1986.

Kalman, R. E. "A new approach to linear filtering and prediction

problems." Trans. ASME, Vol. 82, Series D, No. 1, Journal of
Basic nggneerlgg, mrcﬁ,.l%o. pp.. 35-45.

Kalman, R. E. "New methods in Wiener filtering theory." Proceed-

ings of the First S osium on Engineeri lications of Random
Function 'T'Eeor* anla1 8roﬁﬁﬂy, ﬁew YorE, Hew York, John Wﬂey,
1 » PP -

Kalman, R. E. "Mathematical description of linear dynamical
systems." SIAM Journal on Control, Series A, Vol. 1, No. 2, 1963,
pp. 152-191°

Kalman, R. E. "On the general theory of control systems."
Proceedings of the First IFAC Congress, Moscow, 1960, pp. 481-492,

Kalman, R. E. and R. S. Bucy. "New results in linear filtering and
prediction theory." Trans. ASME, Series D, Journal of Basic

Bngineering, Vol. 83, 1961, pp. 95-108.

Leondes, C. T. "Theory and applications of Kalman filtering."
North Atlantic Treaty Organization, AGARDograph 139, AD 704 306,
February, 1970.

Luenberger, D. G. "Observing the state of a linear system." IEEE
Trans. Military Electronics, MIL-8, April, 1964, pp. 74-80.

Luenberger, D. G. "Observers for multivariable systems." IEEE
Trans. Automatic Control, AC-11, No. 2, April, 1966, pp. 190-197,

Luenberger, David Gilbert. Determining the state of a linear system
with observers of low dcxnamlc order, gﬁﬁ in Engineering, Stanford
niversity, Stanford, Califoruia, .

Newmann, M. M. "Optimal and sub-optimal control using an

observer when some of the state variables are not measurable."
International Journal of Control, Vol. 9, No. 3, 1969, pp. 281-290.

Penrose, R. "A generalized inverse for matrices." Froc,
Cambridge Phil. Soc., Vol. 51, 1955, pp. 406-413.

103




25,

26,

27,

28.

29,

31.

32.

33.

Sarachik, P. E, and E. Kreindler. "Controllability and observability

of linear discrete-time systems." International Journal of Control,

Vol. 1, No. 5, May, 1965, pp. 419-432,

Singer, Robert Allan, The design and synthesis of linear multi-
variable systems with Tication to state estimation. Ph.D, In
Engineerlng. sumoraﬂ i Stanford, Calif

niversity, Stanford, ifornia, 1968.
Singer, R. A. "Bstimating optimal tracking filter performance for
manned maneuvering targets,” IEEE Trans. Aerospace and
Electronic Systems, AES-6, No. q, luly, 1970, PP. ?73-1!3.
Singer, R. A. andR. A. Monzingo. “An analysis of the Kalman

filter approach to the SAM-D tracking problem." Huﬁes Alrcraft
Company, Fullerton, California, Report 194110-09- g
§eptem£r. 1966,

Sorenson, H. W. "Kalman filtering techniques." Advances in
Control Systems, Vol. 3, C, T. Leondes, Ed., New York, New York,
Academic Press, 1966, pp. 219-291.

Sorenson, H, W. "Controllability and observability of linear,
stochastic, time-discrete control systems.” Advances in Control

Systems, Vol. 6, C. T. Leondes, Ed., New York, New York,
x‘caaemlc Press, 1968, pp. 95-157.

Williams, H. F., "A solution of the multivariable observer for
linear time varying discrete systems." Proceedi of the Second
Asilomar Conference on Circuits and S stems, l’ncﬁ{c Crove,
aamornu, November 1988, PP Iﬂ-ds.

Williams, H. F. "MK 1l MOD®6 sins for C-3 poseidon."” Phase Il
Final Enginecring Report, Appendix B: System Mechanization
Optimization, Vol. 6, Autonetics, Anaheim, California, December 16,
1968,

Wonham, W. M. "On pole assignment in multi-input controllable
Control, AC-12, No. 6

linear systems." IEEE Trans. Automatic s
December, 1967, pp. 660-665.

104
*U.S.Government Printing Office: 1979 — 687002/ 70




